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METHODS 

A literature search was performed on PubMed with the search terms “microbiota” AND “gut” 
AND “brain”, limiting results to research papers published between April 2019 and March 
2020.  Additional filters were applied for “microbiota” AND “depression” OR “Alzheimer” OR 
“Parkinson” OR “brain” OR “colitis”. 161 abstracts were selected for further review. Studies 
were included if they (1) contained original research considering the administration of probi-
otics and other gut microbiota-modulating agents in order to treat depression, Alzheimer’s 
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disease (AD) or Parkinson’s disease (PD); (2) investigated/discussed potential molecular mech-
anisms involved; and (3) were written in English. Eventually, 45 papers were selected.

DEPRESSION

Depression is a mental illness affecting more than 264 million people worldwide1. Chronic 
stress and anxiety are both major risk factors. As previous studies have emphasized the im-
portance of microbial dysbiosis in patients with depression, modulation of the microbiota 
could thus be a potential strategy to influence several key brain signaling pathways2. 

Many probiotics (i.e., live or heat-killed micro-organisms that are claimed to be beneficial 
for health when consumed or applied to the body) exert general anti-inflammatory effects 
on the intestinal, systemic and brain level (Figure 1 and Table 1). In the following studies, 
mice were exposed to chronic immobilization stress (IS) to induce anxious and depressive 
symptoms, which were associated with both neural and intestinal inflammation. Upon treat-
ment with Lactobacillus reuteri, Bifidobacterium adolescentis, L. mucosae or B. longum, mice 
showed improved performance in the elevated plus maze, light/dark transition, tail suspen-
sion and forced swimming tests. Furthermore, NFκB activation and infiltration of microglial 
cells were reduced in the hippocampus, whereas brain-derived neurotrophic factor (BDNF) 
levels were elevated (Figure 1)3-5. These effects are suggested to result from suppressing in-
testinal inflammation and reducing the levels of interleukin (IL)-6, corticosterone, and lipo-
polysaccharide (LPS) in the blood (Figure 1)3,4. Evaluation of fecal microbiota composition 
showed that treatment with the probiotics reversed the effects of IS by re-increasing the 
levels of Firmicutes and re-suppressing Proteobacteria and Bacteroidetes, which decreased 
intestinal LPS production (Figure 1)3-5. At the genus level, treatment with B. adolescentis in-
creased Lactobacillus and decreased Bacteroides5. In addition, L. mucosae treatment was also 
shown to restore intestinal homeostasis and improve cognitive decline and signs of anxiety 
and depression during Escherichia coli-induced murine colitis6. Furthermore, the use of pro-
biotic cocktails containing Lactobacillus and Bifidobacterium strains were able to improve 
depressive behavior by restoring gut and brain homeostasis3,7,8. 

Secondly, probiotic treatment can also affect the 5-hydroxytryptophan (5-HT) signaling path-
way in the brain in rodents (Figure 1). The emergence of depression by chronic mild stress could 
largely be prevented in mice by the treatment with several Bifidobacterium strains (Table 1)9,10. This 
effect was also observed in rats treated with B. longum, L. rhamnosus or the prebiotics (i.e., food 
compounds that enhance the growth or activity of beneficial microorganisms) fructo-oligosac-
charide or galacto-oligosaccharide (Table 1)8. Their mechanism of action was related to restoring 
5-HT synthesis in the hippocampus and prefrontal cortex. More specifically, treatment affected 
tryptophan hydroxylase (TPH)1 expression in the colon and TPH2 and indoleamine-2,3-dioxygen-
ase (IDO) levels in the brain (Figure 1)8-10. Although both the prebiotic and probiotic treatments 
affected microbiota composition, the study findings were not consistent8-10. 

Thirdly, the beneficial effect of several gut microbiota likely involves Toll-like receptor (TLR) sig-
naling and the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome (Figure 
1). Takahashi et al11 investigated the effect of administering Enterococcus faecalis 2001 (EF-2001) to 
dextran sodium sulphate (DSS)-treated mice on the colon and the brain. The preventive treatment 
with EF-2001 improved the disease severity and histopathological changes of the colon induced by 
DSS-treatment. In addition, the protein levels of the proinflammatory cytokines IL-6 and tumor ne-
crosis factor (TNF)-α were reduced in the colon and brain (Figure 1). EF-2001 treatment also resulted 
in specific changes in the hippocampus, including the reversal of reduced neurogenesis, an elevated 
activation of the NFκB p65/XIAP pathway, a decreased caspase-3 activity, as well as an increased 
expression of TLR2 (Figure 1). Hence, they suggested that EF-2001 could exert this antidepressant 
effect by decreasing cytokine expression and regulating cell death in the hippocampus via TLR2 
activation, besides its protective effect on the intestines. A study performed by Kambe et al12, fur-
ther showed an anxiolytic effect of E. faecalis strain 12 on behavioral tests in healthy mice. Zhang et 
al13 also highlighted an important role for the inflammasome in shaping the microbiota-gut-brain 
axis. In their study, fecal microbiota transplantation (FMT) of NLRP3 knockout mice improved de-
pressive-like behaviors in mice. Alteration of the microbiota profile was shown to partially restore 
astrocyte function by inhibiting the increase of the circular RNA HIPK2. 
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Figure 1. Summary of the effects of psychobiotics on the microbiota-gut-brain axis. The psy-
chobiotics that were investigated individually or in combination included several probiot-
ics, prebiotics, medication and supplements, as well as physical activity. Bifidobacterium and 
Lactobacillus strains are the most potent bacteria to affect gut-brain communication. The 
therapeutic effect of psychobiotic administration involves their effect on gut microbiota com-
position and inflammatory parameters in the gut, blood and central nerve system (CNS). In 
addition, they are able to affect the expression of neurotransmitters (dopamine & serotonin 
(5-HT)), glucose transporters (GLUT1/3) and protein accumulation (amyloid b & Tau protein) in 
the brain. IL = interleukin; TNF = tumour necrosis factor; LPS = lipopolysaccharide, TLR = toll-
like receptor; NLRP3 = NOD-, LRR- and pyrin domain-containing protein 3; TPH = tryptophan 
hydroxylase; PPARg = peroxisome proliferator-activated receptor g; BDNF = brain derived neu-
rotrophic factor; GDNF = glial derived neurotrophic factor; MAO-B = monoamino-oxidase; 
5-HT = 5-hydroxytryptophan; IDO = indoleamine-2,3-dioxygenase; EPA = eicosapentaenoic 
acid; IGFR = insulin-like growth factor receptor; AMPK = monophosphate-activated protein 
kinase, Akt = protein kinase B. The figure was created with BioRender.com. 
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Finally, specific medications, supplements or foods also possess antidepressant properties 
by reshaping the gut microbiota (Figure 1 and Table 1). In an alcohol-induced depression 
model, the treatment with nicotinamide riboside (NR), a form of Vitamin B3, alleviated de-
pressive-like behavior in mice. NR treatment suppressed microglia activation and cytokine 
secretion and restored BDNF levels in the brain (Figure 1). The AKT/GSK3β/β-catenin signaling 
pathway was also affected, which is involved in neuronal cell survival and apoptosis and is sug-
gested to be a downstream target of BDNF. Interestingly, these effects could be confirmed by 
FMT of stool from NR-treated mice to depressed mice. Furthermore, significant correlations 
were found between neuronal changes, NR treatment and microbial composition. Specifical-
ly, Akkermansia and Clostridium XVIII were mainly enriched in the alcohol-exposed group, 
whereas Barnesiella and Alloprevotella were the most abundant post treatment group with 
NR14. Kim et al15 showed a healing effect of melatonin on colitis by modulating TLR4, which 
has been suggested to play a key role in depression and PD (Figure 1)16. In particular, mela-

TABLE 1. MAIN PSYCHOBIOTIC AGENTS USED AND THEIR IMPLICATIONS. 
THE NUMBERS INDICATE THE REFERENCES OF THE CORRESPONDING STUDIES.

Class	 Agent	 Anxiety/	 Alzheimer’s	 Parkinson’s
		  Depression	 disease	 disease

Other	 Electrolyzed reduced water			   47
	 Mid-infrared light		  35
	 Voluntary running			   49

Medication	 Nicotinamide riboside (Vit B3)	 14
  and 	 Melatonin	 17
  supplements	 L-Dopa 			   40
	 Entacapone			   40
	 Broad-spectrum antibiotics 	 25		  44, 45
	 Antidepressants	 22, 24

Prebiotics	 Xanthoceraside		  34
	 Valeriana jatamansi (iridoids)	 20
	 Triphala plant extract		  32
	 Polysaccharides from okra	 17
	 Galacto-oligosaccharide	 8		
	 Fructo-oligosaccharide	 8, 23
	 Fish oil	 18	
	 Chlorogenic acid 	 19	
	 Cistanche tubulosa	 21

Probiotics	 FMT	 13, 14	 29
	 S. thermophilus		  38	
	 P. pentosaceus	 7
	 L. rhamnosus	 7, 8		  46
	 L. reuteri	 3
	 L. plantarum	 7	 32, 38	
	 L. paracasei		  38	
	 L. mucosae	 4, 6
	 L. helveticus		  38	
	 L. fermentum		  32
	 L. brevis		  38	
	 L. acidophilus		  33, 38	 46
	 E. faecalis	 11, 12
	 C. butyricum		  31
	 B. longum	 4, 8, 9, 10	 30, 32, 33
	 B. lactis	 7	 38	
	 B. breve	 7, 10
	 B. bifidum		  33
	 B. animalis lactis			   46
	 B. adolescentis	 3, 5
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tonin treatment increased goblet cells and reduced pro-inflammatory cytokine levels in the 
colon via TLR4 activation. Moreover, the ratio of Firmicutes to Bacteroidetes was increased, 
which could result from TLR4-mediated Reg3β activation15. In addition, the antidepressant 
effects of a polysaccharide isolated from okra involved the partial suppression of TLR4 and 
NFκB activation in the murine hippocampus by reshaping the microbiota and the levels of 
short chain fatty acids in the gut (Table 1)17. Food supplementation of depressive rats with 
olive or fish oil, also showed improvements on gut dysbiosis (Table 1). Nevertheless, only fish 
oil supplementation had mild preventive and curative effects on depressive behavior which 
could be related to increased brain levels of phospholipid EPA (Figure 1)18. Chlorogenic acid, 
a phenolic acid present in fruit, vegetables and coffee, also exerted antidepressant effects in 
rats by restoring microbial diversity, specifically the abundance of Firmicutes and Proteobac-
teria (Table 1). Moreover, serum analysis by ELISA showed reduced levels of IL-6 and TNF-α, as 
well as an inhibitory effect on dopamine and 5-HT decrease (Figure 1)19. In addition, Valeriana 
jatamansi and Cistanche tubulosa, two plants widely used in traditional Chinese medicine, 
were also shown to alleviate depressive-like symptoms in rodents that were exposed to chron-
ic unpredictable mild stress, which was associated with changes in gut microbial composi-
tion20,21. Interestingly, the main antidepressants seem to exert parts of their beneficial effects 
by influencing the gut microbiota composition, stressing the bidirectional communication 
between the gut and the brain (Table 1). Fluoxetine, a selective serotonin reuptake inhibitor, 
was shown to restore the microbiota composition to a similar extent as the administration of 
fructo-oligosaccharides in rodents22,23. Lukic et al24 further confirmed the effect of fluoxetine 
and four other main antidepressants (escitalopram, venlafaxine, duloxetine and desipramine) 
on the murine gut microbiota. The simultaneous treatment of mice with duloxetine and Ru-
minococcus flavefaciens, a microbial species that was reduced by antidepressant treatment, 
ameliorated the effects of duloxetine on murine behavior. Gene expression analysis in the 
prefrontal cortex revealed that R. flavefaciens treatment increased expression of genes relat-
ed to mitochondrial processes, whereas neural plasticity-related genes were downregulated. 
Moreover, it also affected serotonin levels in the brain. On the other hand, Schmidtner et al25 
showed that the anxiolytic effects of antibiotic treatment of high-anxiety breeded male Wis-
tar rats, was abolished by simultaneous short-term treatment with escitalopram.

ALZHEIMER’S DISEASE

AD is a progressive neurodegenerative disorder mainly affecting the elderly and is the main cause 
of dementia. The pathophysiology of AD is characterized by the accumulation of amyloid β (AB) 
and hyperphosphorylated tau protein in the brain in combination with neuroinflammation. In-
terestingly, increasing evidence highlights a key role for the gut microbiota26. Accordingly, two 
recent studies27,28 showed that alterations in microbial composition could even distinguish differ-
ent stages of AD. 

Probiotics seem to improve cognitive function by influencing aggregate formation and 
inflammation in the brain (Table 1 and Figure 1). In this way, FMT from healthy to AD mice 
alleviated both the accumulation of AB and tau protein and gliosis in the brain which was 
associated with improved memory, as well as restoring intestinal homeostasis and systemic 
immune cell populations (Figure 1)29. Lee et al30 explored the therapeutic potential of 25 
Lactobacillus and 25 Bifidobacterium species. The most potent one was B. longum NK46, of 
which treatment suppressed intestinal inflammation which was associated with a decrease of 
Firmicutes and Proteobacteria and an increase of Bacteroidetes populations in the 5XFAD-Tg 
mouse model (Table 1). Furthermore, probiotic treatment attenuated cognitive decline based 
on their improved performance in the novel object recognition, Y-maze, passive avoidance 
and Morris water maze tasks (Figure 1). Similar effects were observed during the administra-
tion of Clostridium butyricum which restored microbiota composition and increased butyrate 
production in the gut (Table 1)31. Remarkably, Westfall et al32 showed the potential of a sym-
biotic treatment to affect multiple aspects of the pathogenesis. By combining three probi-
otic strains and a Triphala plant extract, they were able to simultaneously improve survival, 
immune signaling, metabolism, oxidative, and mitochondrial stress in a Drosophila model 
of AD (Figure 1 and Table 1). By using a specific inhibitor, they further showed the major in-
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volvement of peroxisome proliferator-activated receptor (PPAR) g, which is a lipid sensor that 
is expressed in many tissues, including the gut and the brain and is involved in inflammatory, 
metabolic and oxidative stress-related pathways. As this receptor can be modulated directly 
or indirectly by the gut microbiota, it is suggested as a potential mechanism of gut-brain 
communication (Figure 1). Besides these molecular effects, Rezaei et al33 studied the effect of 
probiotics on neuronal activity. Preventive treatment with a mixture of L. acidophilus, B. bifi-
dum, B. longum improved the induction of long term potentiation, a key mechanism involved 
in long-term memory storage, in the hippocampal CA1 region of the rat’s brain (Table 1). 

The gut microbiota could also be modulated by using specific plant extracts or other 
non-invasive methods (Table 1 and Figure 1). The neuroprotective effect of Xanthoceraside, a 
triterpenoid extracted from the husks of Xantocheras sorbifolia, was evaluated by investigat-
ing alterations in the gut microbiota as it could not pass the blood-brain-barrier of AD mice. 
They found a decreased ratio of Firmicutes to Bacteroidetes. Interestingly, changes in micro-
bial composition could be linked to changes in brain metabolites and FMT transplantation 
of Xanthoceraside-treated to untreated AD mice improved disease phenotype34. In addition, 
Wang et al35 observed reduced AB plaque deposition and improved cognitive functioning 
upon whole-body mid-infrared light treatment in AD mice. Interestingly, microbial homeo-
stasis was also restored.

Additionally, some other potential mediators of gut-brain communication reached attention. 
Shen et al36 confirmed the role of NLRP3 in gut-brain communication in the pathogenesis of AD 
(Figure 1). The transplantation of AD fecal microbiota into healthy mice, did upregulate NLRP3 
and induced inflammation in the intestines and brain. Another surprising mechanism of the bi-
directional gut-brain communication was proposed by Diling et al37, who identified interactions 
between the expression of circular RNAs and microbial changes in AD. Accordingly, injection of 
circNF1-419 in the cerebral cortex also influenced microbial composition and exerted healing ef-
fects on the intestine of AD mice models. In addition, probiotic treatment could also restore 
glucose metabolism in the brain. In a triple transgenic mice model of AD, Bonfili et al38 showed 
that the administration of a probiotic cocktail containing five Lactobacillus strains, two Bifidobac-
terium strains and one Streptococcus strain improved glucose uptake in the brain by upregulating 
the transporters GLUT1 and GLUT3 and insulin-like growth factor receptor (IGFR) β, in accordance 
to the reduced phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) 
and protein kinase B (Akt) (Figure 1).

PARKINSON’S DISEASE

PD is a progressive neurodegenerative disease with the highest prevalence in people older 
than 65 years. The pathophysiology involves the loss of dopaminergic neurons in the substan-
tia nigra and the formation of α-synuclein which is reflected in a decreased motor function 
and is also often associated with gastrointestinal complaints. The Braak hypothesis suggests 
that PD development may start in the gut by α-synuclein build-up in the enteric nerve sys-
tem, which propagates to the brain via the vagus nerve39. Although it remains unclear which 
triggers are responsible for altering the microbiota composition, and whether changes in 
microbiota composition precede disease development, several recent studies further high-
lighted the differences in microbiome composition in PD patients that could even distinguish 
between different stages of disease40-43.

As PD development is associated with a pro-inflammatory environment and the disturbance 
of the dopamine signaling pathways in the dorsal striatum of the brain, several studies investi-
gated the potential of microbiota modulation on these biological processes (Figure 1 and Table 
1). The most drastic way to study the role of the gut microbiota in the pathogenesis of PD, was 
highlighted by Koutzoumis et al44, who treated rats with broad-spectrum antibiotics resulting 
in a 90% reduction of microbial richness. Considering microbial diversity, Firmicutes were de-
creased and Proteobacteria, Bacteroidetes, Verrucomicrobia and Cyanobacteria increased. Af-
ter injection of oxidopamine to induce PD development, antibiotic treatment alleviated motor 
deficits and dopaminergic cell loss, as well as decreasing the levels of IL-1b and TNF-α in the stri-
atum (Figure 1). Similar results were obtained by Pu et al45 in the 1-methyl-4-phenyl-1,2,3,6-tet-
rahydropyridine (MPTP)-induced mouse model of PD. Other animal studies investigated the 
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effects of probiotic treatment on dopaminergic neurodegeneration. Srivastav et al46 indicated 
that the pretreatment with a probiotic mixture containing L. rhamnosus GG, B. animalis lactis 
and L. acidophilus exerted neuroprotective effects in two models of PD, which potentially re-
sulted from the butyrate-induced upregulation of BDNF and glial cell line-derived neurotrophic 
factor (GDNF), as well as the inhibition of monoamino-oxidase (MAO)-B in the brain (Figure 
1 and Table 1). More specifically, pretreatment greatly counteracted the loss of dopaminergic 
neurons, as well as the levels of dopamine and its metabolites. The activation of inflammatory 
cells in the brain was also alleviated (Figure 1). 

Butyrate-producing bacteria are likely interesting candidates for PD treatment (Table 1 
and Figure 1). In a pesticide-induced rat model of PD, the anti-oxidant treatment with electro-
lyzed water increased the abundance of butyrate-producing bacteria in the gut, preventing 
intestinal barrier dysfunction and decreasing striatal dopamine levels47. Furthermore, Qiao et 
al48 highlighted the potential working mechanism of sodium butyrate in the gut. According 
to the Braak hypothesis, butyrate stimulation of enteroendocrine cells, which are in proximity 
to α-synuclein-containing nerves, induced a-synuclein degradation potentially by inducing 
autophagy in an Atg5- and PI3K/Akt/mTOR-related way. 

Brain to gut communication seems to be important in PD pathology as well. Intranigral 
overexpression of a-synuclein in rats was associated with an altered gut microbiome, de-
creased neuronal density in the intestinal submucosa, elevated enteric glial cell expression 
in the myenteric plexus and affected myenteric and submucosal tyrosine hydroxylase levels. 
Interestingly, physical activity, in the means of voluntary running, exerted beneficial effects 
on all these factors, including alterations in microbial genera that are related to gut health49. 

CONCLUSIONS

In this review, we show evidence that the modulation of the gut microbiota greatly affects the 
symptoms and physiological pathways related to major neurological disorders, including depres-
sion, AD and PD (Table 1). The psychobiotics mainly exerted their effects by restoring gut homeo-
stasis and pro-inflammatory molecules in the blood. As a result in the brain, disease symptoms im-
proved associated with a reduction in cytokine levels, microglia activation, plaque deposition and 
neuronal cell death and with an increase in neurotrophic factors and glucose uptake in the brain. 
Additionally, the 5-HT, TLR, NLRP3 and PPARg signaling pathways, as well as several circular RNAs, 
were highlighted as major bidirectional communication routes between the gut and the brain 
(Figure 1). Interestingly, Lactobacillus and Bifidobacterium seem to be the most potent genera 
to influence the microbiota-gut-brain axis. Unfortunately, most studies are performed in animal 
models and the exact mechanisms and pathways connecting the microbiome-gut-brain axis need 
further investigation to prove their causality. Nevertheless, influencing the microbiota-gut-brain 
communication has major potential for the future treatment of depression, AD and PD.  
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