
Abstract: Over the past 12-months, almost 50 original publications concerning non-Helicobacter pylori 
Helicobacters were published. This review summarizes these main findings. A paragraph concerning the 
importance of Helicobacters in the environment is also presented. Three novel Helicobacter species were 
proposed: ‘Helicobacter delphinicola’ sp. nov. was isolated from the stomach of dolphins; ‘Helicobacter 
monodelphidis’ sp. nov. and ‘Helicobacter didelphidarum’ sp. nov. were isolated from the feces and the large 
intestine of opossums. Data showed the virulence of Helicobacter suis in mammals, supported its transmis-
sion from pigs to human, and highlighted the relevance of testing H. suis in gastric biopsies from patients 
negative for H. pylori infection. Data proposed longer duration treatment for successful eradication of He-
licobacter cinaedi in humans. A role for Helicobacter bilis in inflammatory bowel disease and colorectal 
carcinogenesis was also shown in humans and new data supported the zoonotic importance of Helicobacter 
spp. in dogs. Several studies in Helicobacter felis-infected mice models akin to human gastric cancers have 
shown the importance of serine-phosphorylated-STAT3, PD-1/PD-L1 pathway and NLRC5 signaling in the 
promotion of gastric cancer, as well as the therapeutic potential of CCL28 blockade in gastric cancer pro-
gression. Using susceptible mice infected with enterohepatic Helicobacter spp. akin to human inflammatory 
bowel diseases, epigenetic dysregulation following chronic inflammation was shown to participate in the 
initiation of colorectal cancer; the protective effects of the inhibition of ALDH1A enzyme by WIN 18,446 
was shown in Smad3−/− mice; and Helicobacter hepaticus GroEL/Hsp60 was identified as a driver of colitis 
in a CD40-mediated model of colitis and its CDT promoted colitis development by activating the JAK-STAT 
signaling pathway. Finally, the wax moth larvae, Galleria mellonella, was reported to be a useful and fast 
model to assess virulence of enterohepatic Helicobacter spp.    
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NON-HELICOBACTER PYLORI HELICOBACTER (NHPH) INFECTIONS IN HUMANS 

Helicobacter suis is a gastric Helicobacter naturally hosted by non-human primates and pigs 
and may be transmitted to humans. Although its prevalence is underestimated in humans, H. 
suis is the second most prevalent Helicobacter species in the human stomach where it is asso-
ciated with gastric MALT lymphoma. A concomitant infection with Helicobacter pylori and H. 
suis lymphoma was described in a 53-year-old woman, who was diagnosed with atypical gas-
tric mucosa-associated lymphoid tissue (MALT) lymphoma with multiple lymphomatous pol-
yposis (MLP), most likely associated with H. suis1. Eradication of H. pylori and H. suis cured the 
MALT lymphoma, but multiple granular elevations remained in the gastric body1. Based on 
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Koch’s postulates, Rimbara et al2 demonstrated the virulence of human H. suis isolates during 
infection in mice. Comparative genomics of human and porcine H. suis isolates revealed very 
similar genomes, suggesting its transmission to humans2. Additionally, H. suis lacks orthologs 
of the two major virulence factors of H. pylori, i.e., CagA and VacA, but contains highly plastic 
genomic regions encoding putative strain-specific virulence factors, including type IV secre-
tion system-associated genes.

Two Japanese studies suggested that the prevalence of NHPH may be significant and pre-
viously underestimated. A retrospective study3 showed NHPH-associated gastritis in 50 out of 
3,847 Japanese patients (1.30%) over the last decade and the prevalence increased to 3.35% 
(30 of 896 patients) during the last 28 months. Analysis of the latter 30 positive cases identified 
28 as NHPH: 26 as H. suis and two as Helicobacter heilmannii/Helicobacter ailurogastricus. None 
of these NHPH-infected patients were co-infected with H. pylori. Almost all NHPH-positive pa-
tients were asymptomatic but presented gastritis. This suggests that NHPH infection should 
be investigated in patients with gastritis whose H. pylori-based serology is negative3. Another 
study4 analyzed gastric biopsies obtained in 17 hospitals in Japan including 236 patients with-
out H. pylori infection and who did not receive any H. pylori-eradication treatment. Forty-nine 
cases (20.8%) were positive for NHPH, of which 22 cases could not be identified, seven cases 
were positive for H. heilmannii sensu stricto/H. ailurogastricus, and 20 cases were positive for 
H. suis. Forty-five patients had been treated with one of the four types of triple therapy used 
for H. pylori eradication, leading to eradication of NHPH in all cases4. The prevalence of five 
NHPH was also analyzed in Iranian patients without H. pylori infection who were not treated 
with H. pylori-based eradication therapy. Among the 60 gastric biopsies included from dyspep-
tic patients, Helicobacter salomonis, H. heilmannii, H. suis, Helicobacter felis and Helicobacter 
bizzozeronii were found in 20, 13, 10, 10, 13 and 7 cases, respectively5. None of these NHPH 
were found in Iranian stray cats according to publications of this year6.

With regard to enterohepatic Helicobacter spp. (EHH), a case of Helicobacter canis-related 
bacteremia with underlying multilevel degenerative lumbar spinal stenosis was reported in a 
65-year-old woman with rheumatoid arthritis treated with Tofacitinib, a Janus kinase inhibi-
tor (JAKi), known to interfere with the host immune system7. The patient was in close contact 
with her pet dogs. This case hints at a possible zoonotic H. canis transmission favored by the 
immunosuppressive medication and highlights the increased risk of opportunistic infections 
with JAKi used in the treatment of rheumatoid arthritis7. 

Helicobacter cinaedi infections are associated with a wide variety of clinical presentations 
ranking this Helicobacter species among emerging human pathogens. The number of new 
clinical cases involving H. cinaedi infection increased this year and suggests that it is an un-
derdiagnosed cause of febrile illness8. H. cinaedi-associated refractory cellulitis was reported 
in 2 patients with X-linked agammaglobulinemia (XLA)9 and eradication required a long du-
ration of antibiotic treatment. H. cinaedi co-infection with Campylobacter and Parainfluenza 
virus was diagnosed in a child with XLA and chronic abdominal pain10. Analysis of five cases of 
H. cinaedi infection revealed that the time required for a H. cinaedi-positive blood culture is 
relatively longer than that of Campylobacter species, especially for patients with underlying 
diseases, reaching up to 17 days11,12. Extended treatment duration should also be considered, 
as a 45-day treatment was required for a patient with rhabdomyosarcoma12. H. cinaedi infec-
tion also occurred in immunocompetent humans8. A case of H. cinaedi bacteremia secondary 
to diarrhea in an immunocompetent patient provided evidence that one route of bacteremia 
occurs through translocation from the intestinal tract to the bloodstream13. H. cinaedi is a 
fastidious, underdiagnosed pathogen whose culture from human blood samples is improved 
with the use of FAPlus/FNPlus bottles14.

The role of Helicobacter bilis was investigated in inflammatory bowel disease (IBD) (n=20), 
colorectal cancer (CRC) (n=58) and adenoma (AD) (n=20). Compared to normal colorectal 
mucosa (NC) (n=40), the study revealed a higher abundance of H. bilis in CRC than in IBD, 
AD and NC15. Similarly, the average number of CD4+CD45RB+T was also higher in CRC than in 
IBD and NC, with a positive correlation between the H. bilis abundance and density of CD4+C-
D45RB+T in 30 colorectal tissues. H. bilis detection was also associated with higher levels of 
IFN-γ. Taken together, these data suggest that H. bilis may play a role in the initiation of IBD 
and colitis-associated carcinogenesis, by promoting the transformation of T cells into CD4+C-
D45RB+T cells and increasing the expression of IFN-γ15. 
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A study16 in Guatemala (n=424) revealed the lack of association between Helicobacter 
species (H. hepaticus, H. bilis and H. pylori) and non-alcoholic fatty liver disease and related 
metabolic conditions. 

NON-HELICOBACTER PYLORI INFECTION IN ANIMALS 

Three novel Helicobacter species have been proposed. ‘Helicobacter delphinicola’ sp. nov. was 
isolated from the gastric fluid of captive common bottlenose dolphins with gastric disease17. 
This rod-shaped bacillus with tightly coiled spirals with two to four turns and two to six bipo-
lar, sheathed flagella, is resistant to 2% NaCl. This species, closely related to Helicobacter ce-
torum, secretes a vacuolizating factor, like the H. pylori VacA toxin17. The two other proposed 
species were isolated from the fecal, cecal and colon contents of grey short-tailed opossums, 
clinically asymptomatic with and without prolapses18. ‘Helicobacter monodelphidis’ sp. nov. 
is spiral-shaped, urease-negative and resistant to nalidixic acid, whereas ‘Helicobacter di-
delphidarum’ sp. nov., has a fusiform morphology with periplasmic fibers, is urease-positive 
and susceptible to nalidixic acid. Both species appear to be closely related to Helicobacter 
canadensis18. 

Whole genome sequencing of ‘Helicobacter himalayensis’ isolated from the gastric mucosa 
of Himalayan marmots19, revealed a 1,829,936 base-pair long genome with a G+C content of 
39.89%, a predicted genomic island named HhiG1, and a total of 1,769 predicted coding se-
quences20. The genome contains 42 virulence factor genes, including those related to flagellar 
motility and cytolethal distending toxin (CDT). Phylogenetically, ‘H. himalayensis’ clustered 
close to H. cinaedi and H. hepaticus20.

H. suis and H. pylori infection were explored in a colony of symptomatic and asymptomatic 
rhesus macaques (n=21) used in research21. Nineteen macaques were positive for H. suis and 
5 of them were also positive for H. pylori. Serology was an inadequate biomarker for H. suis 
diagnosis. In this study, the clinical relevance of H. suis remained unclear but one macaque 
presented a gastric ulcer strongly associated with the infection21. H. pylori and H. suis DNA 
were also detected in two free-range wild boars22.

Helicobacter species colonize healthy wild and captive marmosets and tamarins, and ap-
pear to form part of the normal microbiota. Chronic recurrent diarrhea and weight loss is a 
common problem in captive tamarins. Changes in the fecal microbiota of pied tamarins, a 
new world monkey, in a zoo in England, revealed that Helicobacter jaachi may be associated 
with chronic, recurrent diarrhea in captive callitrichids23.

NHPH can cause disease in humans, and pets are a natural reservoir for many of these 
species. A rare case of hypertrophic canine gastropathy, Ménétrier-like disease, was report-
ed in a dog with a simultaneous manifestation of granulomatous gastritis, with the pres-
ence of Helicobacter spp. and Leishmania24. The dog’s clinical improvement was significant 
after treatment for the helicobacteriosis and leishmaniosis but vomiting persisted probably 
due to the Ménétrier-like disease. The presence of Helicobacter species was also analyzed 
in fecal samples (n=390) from domestic dogs without gastrointestinal symptoms in Chile25. 
These dogs commonly carry Campylobacter (173/390) and Helicobacter species (60/390) in 
their stools, mainly Campylobacter upsaliensis (169/390), H. canis (23/390), Helicobacter ca-
nicola (20/390), H. bilis (14/390), Campylobacter jejuni (8/390) and the proposed ‘Helico-
bacter winghamensis’ species (5/390)25. Another study26 revealed a high prevalence (94.3%) 
of Helicobacter species in dogs (n=35) in Brazil. These Helicobacters were closely related to 
H. heilmannii sensu stricto, H. salomonis, H. felis, and H. bizzozeronii26. An investigation of 
microbiota composition in dogs (n=33) showed that the colonic crypt of healthy dogs was 
mainly composed of Helicobacter species27. These studies support the zoonotic importance 
of Helicobacter spp. in dogs.

The prevalence of Helicobacter species was also analyzed in the digestive tract of stray 
cats (n=30) in Iran. This study revealed the presence of H. pylori (60%), H. canis (43.3%) and 
H. bilis (26.7%) in their duodenum (50%), ileum (60%), colon (50%) and liver (43.3%) and a 
concurrent infection of the duodenum and liver was observed6. Antimicrobial susceptibility 
testing of feline H. heilmannii and H. ailurogastricus revealed that acquired resistance to azi-
thromycin, spectinomycin, enrofloxacin, and lincomycin occasionally occurs in feline H. heil-
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mannii isolates28, suggesting that antimicrobial resistance to these antibiotics should be taken 
into account for human eradication treatment, as pets may constitute a reservoir for human 
zoonosis. Dysbiosis of fecal microbiota in cats infected with protozoal Tritrichomonas foetus 
revealed increased prevalence and abundance of Megamonas and Helicobacter29.

HELICOBACTER SPP. AND THE ENVIRONMENT 

Improvements in the feed efficiency of chickens should decrease production costs and reduce 
the demand of land area for feed production, while also reducing the environmental impact 
of broiler production. Metagenomics of cecal contents from chickens showed that low feed 
efficiency increased the abundance of Campylobacter avium in females and Helicobacter 
pullorum in males, suggesting that gender and food intake play a role in the colonization of 
chickens with these Campylobacterales30.

Analysis of treated urban wastewater reused for irrigation in Spain31 provided evidence of 
the presence of Helicobacter species such as H. pylori, H. hepaticus, H. pullorum and H. suis 
in wastewater samples, even after disinfection treatment31, suggesting an increased risk for 
environmental safety.

MODELS FOR HELICOBACTER INFECTION 

Several H. felis mice models akin to human gastric cancer were used. Myd88-/- mice infected 
with H. felis constitute a fast-progressing gastric cancer model which allowed the early detec-
tion of tumor cells in bone marrow and peripheral blood during cancer progression32. Cyto-
keratins, epithelial to mesenchymal transition markers, and cancer stem cell biomarkers were 
pertinent and useful markers to detect aggressive forms of gastric cancers in this model32. In 
H. felis-infected Myd88-/- mice, Lactobacillus spp. may contribute to a faster development of 
gastric cancer and may serve as a potential biomarker for gastric cancer33. Another model, H. 
felis-infected mice treated with N-methyl-N-nitrosourea (MNU), was used to demonstrate an 
immunosuppressive role of tumor-intrinsic β-catenin signaling and the therapeutic potential 
of CCL28 blockade in gastric cancer progression34. The effects of 5-fluorouracil and oxaliplatin 
were assessed in gastrin-deficient mice infected with H. felis and treated with MNU35. These 
chemotherapeutic agents reduced numbers of myeloid-derived suppressor cells (MDSC) to in-
crease the effects of anti-programmed cell death-1 (PD-1), which promotes tumor infiltration 
by CD8+ T cells35. An adverse effect was the induction of PD-1 ligand (PD-L1) by tumor cells, 
which increases tumorigenesis and accumulation of depleted MDSC, and promotes tumor 
progression35. PD-L1 induction should be considered in the design of therapeutic regimens. 
Infection of dendritic cell-depleted mice with H. felis showed that the PD-1/PD-L1 pathway 
modulates the immune function of gastric dendritic cells that protects the gastric mucosa 
from Helicobacter-induced inflammation but allows persistent Helicobacter colonization36. In 
other mice models of H. felis infection, dendritic cell-derived TGF-β were shown to mediate 
the induction of mucosal regulatory T-cell response to H. felis, essential for the maintenance 
of immune tolerance in mice37. In another study using H. felis and H. pylori mice models of 
B-cell lymphomagenesis, as well as gastric tissues from H. pylori-infected patients, NLRC5 
(nucleotide-binding oligomerization domain-like receptors (NLR) family CARD domain-con-
taining 5), an innate immune molecule, was shown to be a negative regulator of gastric in-
flammation and mucosal lymphoid formation in response to both infections. Aberrant NLRC5 
signaling in macrophages can promote B-cell lymphomagenesis during chronic Helicobacter 
infection38. The model of chronic H. felis infection in mice deficient for serine-phosphorylat-
ed-STAT3 revealed the key role of serine-phosphorylated-STAT3 in promoting Helicobacter-in-
duced gastric carcinogenesis39. Different genetically modified mice were infected with H. felis 
to study the regulation of Mist1-positive stem cells upon the gastric injury and inflammation 
induced by H. felis40. Mist1 transcription factor is a marker for this corpus stem cell population 
that can give rise to cancer. This study showed that gastric Mist1+ isthmus cells are the main 
supplier of regenerated glands and are activated in part through the Wnt5a pathway and 
expand in response to injury and inflammation in mice40. 
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In H. felis-infected mice, a vaccine with silk fibroin hydrogel as the mucosal vaccine carrier 
was evaluated. Data showed that gastric tissue-resident memory CD4+T (CD4+TRM) cells pro-
tect against the infection, and the influence of neutrophils on gastric intraepithelial CD4+TRM 
cell formation was shown41. 

H. hepaticus infection of susceptible mice is widely used to study human IBD. Antibody 
therapies blocking signaling through the CD40-CD40L axis are promising treatments for IBD. 
The DC-LMP1/CD40-mediated colitis mouse model of spontaneous fatal colitis and dysbiosis 
lacks intestinal CD103+ dendritic cells and fails to induce regulatory T cells (iTreg). In these 
mice whose immunity is compromised, H. hepaticus rapidly promotes a strong intestinal in-
flammation and the bacterial chaperonin GroEL/Hsp60, the main specific antigen, is targeted 
in the absence of iTregs41. This study showed that improper immune regulation triggers IBD 
and colitis and highlights the importance of CD103+ DC- and iTreg-mediated immune tol-
erance to maintain a healthy intestinal balance during pathobiont infection42. Multi-omics 
analyses were performed to characterize IBD-induced hyperplasia/dysplasia in Rag2-/-/IL10-/- 
mice infected with H. hepaticus43. In this model, Helicobacter-induced chronic inflammation 
promotes changes in methylation and hydroxymethylation patterns in the genome, altering 
the expression of key tumorigenesis genes and suggesting a role for epigenetic dysregulation 
in the initiation of colorectal cancer43.

Rag2-/-/IL10-/- mice were co-infected with H. pylori and H. hepaticus to study IBD onset44. 
Despite a similar gastric and colonic H. pylori colonization for both genders, only co-infected 
males developed more severe colitis and dysplasia, when compared to mice infected with H. 
hepaticus only. In these co-infected males, inflammatory colonic mRNA levels were upregu-
lated. Thus, H. pylori and H. hepaticus co-infection enhances the inflammatory responses in 
the colon of susceptible male mice, which results in more severe colitis and dysplasia44.

Using Smad3−/− mice infected with H. bilis, Seamons et al45 showed the protective effects 
of ALDH1A enzyme inhibition using WIN 18,446, a non-selective potent ALDH1A inhibitor 
known to decrease all-trans-retinoic acid levels with minimal side effects. WIN 18,446 atten-
uates IBD and deserves to be evaluated in other IBD models.

Dextran sodium sulfate (DSS) chemically induced colitis in mice is an IBD model. C57BL/6 
mice infected with Helicobacter muridarum with and without DSS and indole-3-carbinol 
(I3C), a natural plant product46, revealed the beneficial effect of I3C on colitis because it ex-
erts an agonist function of the aryl hydrocarbon receptor and affects bacteria and bacterial 
byproducts. H. muridarum-infected mice are a pertinent IBD model as the immune response 
to H. muridarum mimics responses seen during DSS-chemically induced colitis and human IBD 
in terms of local and systemic cytokine responses and microRNA changes. Additionally, H. 
muridarum does not alter the activity of the I3C compound46. When studying the effects of 
native starches on the onset of colitis in DSS-chemically induced colitis in mice, the authors 
showed the beneficial effects of some native starches from potato, pea, and Chinese yam, 
that could be used to alleviate colitis and also to inhibit H. hepaticus47. 

The wax moth larvae from the Pyralidae family, Galleria mellonella, was recently proposed 
as a model to study the virulence of different pathogens. The virulence of H. bilis, H. canicola, 
H. canis, and proposed ‘H. winghamensis’ isolated from domestic dogs was assessed using 
the G. mellonella model48. These larvae were susceptible to Helicobacter infection after four 
hours of infection and H. canicola was the highest virulent Helicobacter species in this model. 
Histopathology revealed cellular and humoral immune response, accumulation of hemocytes, 
nodulation, and melanin deposition in different tissues48.

VIRULENCE FACTORS 

In vitro experiments showed that soluble factors secreted by H. felis stimulate IL-10-producing 
B cells which suppress differentiation of H. felis-activated stimulatory dendritic cells49.

The main virulence factor of EHHs is CDT, a genotoxin which triggers DNA breaks. The nu-
clear remodeling following CDT-induced DNA damage can be associated with the formation 
of messenger ribonucleoprotein particles concentrated and invaginated in the nuclei of giant 
surviving cells50. These structures, called nucleoplasmic reticulum (NR), were observed both in 
vitro and in H. hepaticus-infected mice and concentrate the RNA binding proteins UNR/CSDE1 
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and P62/SQSTM150,51. CDT-induced NR formation is associated with cell survival and involves 
autophagy, which leads to selective removal of CDT-induced micronuclei-like structures and 
protects the cells against induced apoptotic cell death51. In another study, IL10−/− male mice 
infected with H. hepaticus and its corresponding CDT isogenic mutant strain52 showed that 
CdtB promotes colitis development by induction of an inflammatory response and activation 
of the JAK-STAT signaling pathway. In this model, CDT did not affect the colonization efficien-
cy of H. hepaticus and increased the NO content in the proximal colon52. 

H. pullorum commonly colonizes the gastrointestinal tract of poultry causing gastroenteri-
tis. It is an emerging zoonotic Helicobacter species that causes digestive diseases in humans 
through ingestion of contaminated meat. The genetic characteristics of H. pullorum (n=23) 
from different sources (poultry, meat and animals) and countries (Asian and Western coun-
tries) revealed that H. pullorum exhibits a high genetic diversity and two subtypes of type 6 
secretion system53. 
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