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INTRODUCTION: THE MICROBIOME AND ANTIMICROBIAL RESISTANCE

The microbiome is a complex community whose composition varies based on diet, age, 
geographical location, a specific region in the host, as well as exposure to antibiotics and 
infections1-4. More specifically, antibiotic treatment causes reduced species diversity and al-
tered metabolic activity that may lead to the development of antibiotic-resistant strains. The 
pool of antibiotic resistance genes is referred to as the resistome3. Definitions of the terminol-
ogy used in this manuscript are summarized in Table I.

Metagenomic sequencing allows for an in-depth characterisation of the microbiota 
and resistome directly from samples, for example, faecal, food, environmental samples 
and samples that are recalcitrant to culture3,5. Two main culture-independent sequenc-
ing methods are amplicon and shotgun metagenomic sequencing. Amplicon sequencing 
involves sequencing a single marker gene such as the small subunit of bacterial ribo-
somal RNA (16S rRNA) or the fungal internal transcribed spacers (ITS1/ITS2) used for 
taxonomic identification and determination of species diversity (metataxonomics). On 
the other hand, shotgun metagenomic sequencing allows for the identification of all 
the genes present in the sample without the selection of a specific gene3,6. In general, 
processing the samples remains challenging because of the high heterogeneity, variable 
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TABLE 1. DEFINITIONS OF TERMS USED IN THE MANUSCRIPT. 

	 Definition 

Assembly	� Raw sequencing reads are stitched into larger contiguous sequences known 
as ‘contigs’ and extended contigs called ‘scaffolds’.

Binning	� The clustering of contigs or reads based on feature patterns of the sequences 
into individual genome bins which represent microbial genomes by machine 
learning methods.

Contig	� A set of overlapping DNA segments that provides a contiguous representation 
of a genomic region. 

Chimeric assembly	� Sequences from two or more (sub-)species that are incorrectly joined during 
the assembly. 

Deep sequencing	� Sequencing a genomic region multiple times (hundreds or thousands of times) to 
detect rare microbes, genes or mutations as little as 1% of the original sample.

Genome annotation	� Demarcation of a gene or protein coding sequences, and other genetic 
features such as tRNA, and rRNA in a raw DNA sequence of genome.

Genome coverage or depth	� The number of unique reads that are mapped to a given nucleotide in the 
reconstructed sequence. The number of times a nucleotide is read during 
sequencing.

Hybrid assembly	� Raw sequencing reads from second generation (short read), and third gen-
eration (long read) technologies are used to make larger contiguous se-
quences like contigs, and scaffolds is called a hybrid assembly.

Insertion sequence	� Insertion sequence is a short DNA sequence flanked by inverted repeats and 
act as a transposable element.

Kitome	� Contaminating DNA in DNA extraction kits and other laboratory reagents. 

Long-read sequencing	� Also referred to as third generation sequencing. Sequencing of a single molecule 
and generating longer lengths (5000 bp->5 kb). 

Metagenome	� All the genetic material of microorganisms presents in a sample, consisting 
of the genomes of the microbial community in the sample.

Metagenome-assembled 	� A single-taxon assembly based on one or more binned metagenomes that
genomes	 has been asserted to be a close representation to an actual individual genome.

Metataxonomics	� The study and characterization of the entire microbiota (based on 16S rRNA 
gene sequencing) to create a metataxonomic tree, which shows the relationships 
between all sequences. 

Metatranscriptome	� The collection of all gene transcripts (RNAs) encoded in a community of 
microorganisms within a sample, which provides a snapshot of the gene 
expression in a sample at a given moment.

Microbiota	� The community of microorganisms (such as bacteria, fungi and viruses) present 
in a defined environment (refers to the taxonomy of microorganisms present). 

Microbiome	� The community of microorganisms (such as bacteria, fungi and viruses) and 
their genes present in a defined environment (refers to the bacteria and 
their genes).

Mobile genetic element	� Segments of DNA that encode enzymes and other proteins that mediate the 
movement of DNA within genomes or between bacterial cells.

Multi-omics	� Multiple omics provides an integrated perspective on the genotype-pheno-
type-envirotype relationship by integrating diverse omics data (generated 
from genome, proteome, transcriptome, metabolome and epigenome).

CONTINUED
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composition of the bacterial community, resistome, and PCR inhibitory substances, for 
example, bilirubin, complex polysaccharides, and certain lipid types in faecal samples7. 
In particular, the bacterial loads depend on the sampling site; for example, stool sam-
ples contain higher bacterial loads than samples from the oropharynx. Thus, the results 
of microbiome research depend on several methodological factors, such as the sampling 
method, type of swabs, volume of sample, time of sample collection, sample preser-
vation, whether or not a culturing step is applied, DNA extraction method, the use of 
positive and negative controls, the sequencing method (e.g., 16s rRNA gene amplicon 
sequencing, shotgun metagenomic, metatranscriptomic sequencing), contaminations 
and bioinformatic tools. In this review, we aim to summarise recent methodologies and 
findings regarding metagenomic sequencing and resistome research from sample col-
lection to bioinformatics analysis (Figure 1).

Sample Collection and Pre-Processing

When collecting samples, consistency in the handling of the sampling is essential to mini-
mise technical variations and avoid misinterpretation8. Here, we list the various sampling 
methods for the different microbiota.

GUT MICROBIOTA

Most intestinal microbiota studies collect faecal samples as a proxy for the distal co-
lon microbiome2,9. It is recommended to specify a defined time for collecting stool to 
minimise the shifts in microbial composition during the day9. Following sampling, ho-
mogenisation to minimise intrasample variations and preservation to minimise possible 
confounding variations should be consistent across all study samples10. Bacteria in the 
sample should be inactivated as soon as possible to prevent the overgrowth of certain 
bacterial species or DNA degradation that can lead to taxonomical biases7. Microbial in-
tegrity is best preserved when stool samples are frozen at -80°C or with liquid nitrogen 

TABLE 1 (CONTINUED). DEFINITIONS OF TERMS USED IN THE MANUSCRIPT. 

	 Definition 

N50	� Parameter to define the quality of the genome assembly by the size and a 
number of contigs or scaffolds produced by the assembler.

Resistome	� The collection of all the antibiotic resistance genes (acquired and intrinsic 
resistance genes) and their precursors in pathogenic and nonpathogenic 
bacteria in a given microbial ecosystem.

Short-read sequencing	� Also referred to as second generation sequencing. Sequencing of short 
	 fragments of DNA (50-500 bp) by synthesis or ligation using a DNA 
	 polymerase or ligase enzyme, respectively. 

Shotgun metagenomic	 The untargeted sequencing of all genomic DNA present in a sample.
sequencing

Splashome	 Internal or cross-contamination between samples during sample processing.

Targeted metagenomics	� Metagenomic approach to target a specific region of a genome (e.g., 16S 
rRNA or resistance genes) in multiple microorganisms and samples.

U50	� Metric for measuring the performance of the assembly based on unique, 
non-overlapping, target-specific contigs by using a reference genome as 
baseline. This parameter corrects for the high background noise (i.e., host 
and other non-targets), which contribute to having a skewed, misrepresented 
N50 value.
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as quick as possible upon collection using a proper transportation container or Cary-Blair 
transport medium, which is considered the standard method for storing stool samples9,11. 
Stool samples must be fresh, however, this is usually not possible when remote partici-
pants are sampled, thus, self-made preservation buffers or commercial preservation kits 
can be utilised. Self-made preservation buffers include buffers with preservatives such 
as ethanol12,13, DMSO-EDTA salt solution14, EDTA, citrate trisodium salt dihydrate and am-
monium sulfate15. The commercial kits include DNA/RNA Shield solution (Zymo Research, 
Irvine, CA, USA), RNAlater (Thermo Fisher, Waltham, MA, USA), OMNIgene-Gut (DNA 
Genotek, Kanata, ON, Canada), PrimeStore MTM (Longhorn Vaccines and Diagnostics, 
San Antonia, TX, USA) or Norgen collection kits (Norgen Biotek, Thorold, ON, Canada) 
that can be held/shipped at room temperature9. Of note, PrimeStore MTM (Longhorn 
Vaccines and Diagnostics, San Antonia, TX, USA), the OMNIgene GUT kit (DNA Genotek, 
Kanata, ON, Canada) and the DNA/RNA Shield collection (Zymo Research, Irvine, CA, 
USA) solution were all efficient in conserving faecal samples7,10,15,16. 

Figure 1. 	 CONTINUED
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The abundance of critical resistant pathogens, such as extended-spectrum beta-lac-
tamase (ESBL) or carbapenemase-producing Enterobacteriaceae, is often below the 
detection threshold of direct sequencing. This is a major limitation when character-
ising the gut resistome17,18. Selective culture-enrichment of stool samples can be used 
to identify low abundance pathogens within the microbiome but hampers the quan-
tification of the resistome because of differential growth rates of bacteria17. Merging 
culture-dependent and- independent techniques could provide more profound res-
olution and help better understand microbial communities, including low abundant 
species6. However, there is currently a lack of validated enrichment methods, and, 
additionally, the combined use of such techniques would significantly increase the 
complexity and costs.

Figure 1. Overview of sample collection, sample processing and metagenomic and metatranscriptomic se-
quencing to investigate antimicrobial resistance in the microbiome. Figure of functional profiling from56. 
Figure of taxonomic profiling from57. Figure of resistome databases from46. Figure of network analysis 
from58. Figure of artificial intelligence adapted from59.
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OTHER MICROBIOTA

In contrast to the rich gut microbiota, studying other human body samples (blood, urine, 
oral, tissue and skin samples) provides obstacles such as low microbial biomass. The sam-
ples are dominated by host DNA (90% of human-genome specific reads), challenging the 
metagenomics analysis6,19.

The eNAT swab (Copan Diagnostics Inc., Murrieta, CA, USA), containing a lysis buffer 
to stabilise microbial DNA and RNA, was shown to keep the microbial composition stable 
for vaginal, skin and saliva samples20. In addition, the eSwabs (Copan Diagnostics Inc., 
Murrieta, CA, USA) yielded high consistency in the population captured from the skin21. 
Samples from skin, tissue, blood, the oral cavity and respiratory tract carrying low bacte-
rial loads might need enrichment. Microbial enrichment can be carried out using human 
DNA depletion by differential lysis of mammalian cells (osmotic or chemical) and treat-
ment with propidium monoazide (PMA) or using commercial kits prior to DNA extraction 
of the microbial cells. The HostZERO Microbial DNA kit (Zymo Research, Irvine, CA, USA) 
appeared most effective for human DNA depletion in vaginal and saliva samples20. In 
contrast, the performance of PMAxxTM (Biotium Inc., CA, USA) for free DNA inactiva-
tion in different biological samples (saliva, faeces, urine, vaginal swab) varied extensively 
and should be further evaluated22. Furthermore, culture enrichment on selective and/or 
non-selective enrichment media reduces the effect of host DNA contamination by allow-
ing the proliferation of microorganisms and improving the detection of promiscuous and 
fastidious organisms in bacterial communities6; however, this will affect the composition 
of species and genes in the sample. 

DNA Extraction for Metagenomics

The DNA extraction method plays a crucial role in detecting complex bacterial commu-
nities and is the process where bias is most likely to occur. The DNA extraction methods 
must be compatible with the sample material and preservation solution7. 

The use of a suspended or pelleted sample depends on the instructions of the DNA ex-
traction kit. Different bacterial disruption methods (chemical disruption, mechanical lysis 
by bead-beating, heat lysis, sonication) exist. Mechanical lysis by bead-beating combined 
with other disruption methods (multistage lysis) ensures the recovery of microbial DNA 
from the most complicated samples, such as Gram-positive bacteria7.

Kazantseva et al7 (2021) assessed the DNA extraction of two commercial DNA extraction 
kits: PureLinkTM Microbiome DNA purification kit (Thermo Fisher, Waltham, MA, USA) and 
the ZymoBIOMICSTM DNA Miniprep Kit (Zymo Research, Irvine, CA, USA). The ZymoBIO-
MICS kit exhibited better quality characteristics of isolated DNAs (higher OD 260/230 ra-
tio) and was compatible with the DNA/RNA ShieldTM solution (Zymo Research, Irvine, CA, 
USA)7. For resistome assessment, the addition of plasmid extraction to the standard DNA 
extraction could increase the detection of plasmid-mediated resistance genes17,23; howev-
er, it can introduce bias since the efficiencies of extraction are related to the plasmid size, 
i.e., smaller plasmids are extracted more efficiently than large plasmids17.

Library Preparation for Metagenomic Sequencing

The performance of different library preparation approaches depends on the sample type, 
microbial diversity and amount of input DNA24. Each sequencing platform (Illumina (San 
Diego, CA, USA), Ion Torrent (Thermo Fisher, Waltham, MA, USA), PacBio (Menlo Park, 
CA, USA), Oxford Nanopore (Oxford, UK) has specific metagenomics technical guidance 
available, which describes the sequencing systems, the library preparation methods and 
downstream analysis pipelines25-27. The Illumina Nextera XT and DNA Flex kits (Illumina, 
San Diego, CA, USA) are commonly used in metagenomic library preparations. They cover 
various genomes, from small DNA viruses, microbial genomes and amplicons to complex 
genomes in eukaryotic and human systems24. 
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Sequencing Methodologies for the Detection of Antimicrobial Resistance Genes

While 16S rRNA amplicon sequencing generates information on the microbial diversity in 
the sample, shotgun metagenomic sequencing generates information on the total DNA 
content of the sample, making it suitable for the study of antimicrobial resistance (AMR) 
and for identifying the species specific marker gene for taxonomically complex organisms, 
for instance rplF gene for Neisseria species. Determining all AMR genes in the sample, 
referred to as the resistome, will help understand the complex interactions between or-
ganisms, genes and their environment. However, for effective AMR surveillance, the focus 
should be on clinically relevant yet low abundant AMR genes (such as ESBLs and carbap-
enemases) and horizontal gene transfer events, which are generally rare28. In this case, 
direct metagenomic shotgun sequencing might suffer from low sensitivity in detecting 
minority populations harbouring resistance genes and/or low specificity in identifying al-
lelic variants18,29. All resistance sequences account for less than 1% of the total sequenced 
DNA, indicating that the proportion of these genes is relatively low, and even deep se-
quencing may not be able to capture these elements in the total gene pool present in the 
samples4,28,30. 

Targeted metagenomics using a capture library specific for resistance genes and genes 
involved in DNA mobilisation can increase sensitivity and improve the identification of 
resistance genes within a complex metagenome background4,18. Target capture is a meth-
od to quantify low abundant AMR genes and/or detect allelic variants that alter the sus-
ceptibility phenotypes. Target capture enriches resistance genes directly from standard 
metagenomic DNA extractions and increases the proportion of sequenced reads mapping 
to resistance genes. A targeted sequence capture platform for resistome analysis, such as 
ResCap or AMR-cap, significantly improves the detection of resistance genes and plasmids 
compared to direct metagenomic shotgun sequencing4,18,30-32. However, an enrichment 
bias can occur due to differential capture affinity and amplification rates. In addition 
to low efficiencies in the probe-hybridisation step, signal overloads, or inhibition of the 
enzyme-based steps (e.g. amplification during library preparation) may affect the out-
come31. Noyes et al28 (2017) were able to increase the detection of resistome sequences, 
including antimicrobial resistance genes of public health importance, such as ESBLs, using 
target enrichment while molecular indices were employed to count DNA molecules and 
correct for enrichment bias28.

In contrast, Stege et al4 (2022) observed 32 resistance genes that went undetected by 
ResCap but were detected using metagenomic shotgun sequencing. A number of genes 
were not included in the probe library; however, 14 genes included in the ResCap library 
were also not detected using ResCap. This emphasizes the challenge of continuously up-
dating the probe libraries to include all known resistance genes and shows that genes 
might be missed using ResCap4. Resistance genes that are not present in the reference da-
tabase when the probe libraries are designed might not be captured and might be missed. 
However, AMR-cap was able to capture novel antibiotic resistance genes from the CARD 
database that were unknown when the capture probes were designed32. 

SEQUENCING TECHNOLOGY 

Short-read sequencing platforms [represented by Illumina (San Diego, CA, USA) and 
Ion Torrent (Thermo Fisher, Waltham, MA, USA)] and long-read sequencing platforms 
[represented by PacBio (Menlo Park, CA, USA) and Oxford Nanopore (Oxford, UK)] are 
available for metagenome sequencing. Short-read sequencing made assembly driven 
metagenomics possible, allowing the assembly of composite genomes called metage-
nome-assembled genomes (MAGs). However, short-read sequencing platforms produce 
read lengths of 50-300 bp, making high-quality metagenomic assembly more difficult 
due to intra-and inter-species repeats that confuse short-read assembly algorithms33. 
This results in low recovery of high microdiversity microbes, low recovery of flexible ge-
nomes and uncertainty due to potential chimaera generation34. MAGs of abundant taxa 
in the dataset have been prone to chimeric assemblies and have limitations in resolving 
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mobile elements, information which is of increasing relevance in medical research on 
antibiotic resistance, toxin encoding genes and bacterial pathogenicity islands encoding 
virulence factors35. 

In contrast to short-read sequencing, PacBio long-read sequencing can cover repet-
itive regions and recover complete MAGs (circularised and without gaps) directly from 
assembled human gut metagenomes36. PacBio sequencing can be performed using highly 
accurate long reads (10 kb HiFi reads or circular consensus sequencing, CCS) and continu-
ous long reads (CLR). PacBio long-read sequencing can provide complete gene profiling; 
however, CLR has a higher error rate (10-15%). Moreover, dependence on bioinformatics 
designed for short-read assembly makes gene discovery and assembly for low-abundance 
organisms difficult. When using long-read sequencing, high coverage is needed to obtain 
reliable sequence with low error rates, which can be obtained by using CCS, DNA sub-
reads that are sequenced multiple times by the same DNA polymerase before generating 
a consensus sequence. This increases the accuracy to comparable levels to Sanger and 
Illumina sequencing (more than 99%)5,34,37. Also, the Oxford Nanopore Technologies is a 
long-read sequencing technique (reads up to 2 Mb) that can be used to obtain in-depth 
annotations for taxonomical and functional profiles of the metagenome with 97% raw 
read accuracies27,38,39.

To improve sequencing coverage, investigating low-abundance species can be done 
by combining third-generation long-read sequencing with ultra-deep second-generation 
sequencing36. Hybrid assembly, using short and long reads, improves the quality of the as-
sembly (increasing average contig length, contig N50, U50, size and number of large con-
tigs), generates a higher percentage of complete genes and increases the completeness 
of the genome reconstruction compared to using only short-read or long-read sequenc-
ing5,36. The quality of assemblies and microbiome profiles can be influenced by sequencing 
depth9, the complexity of the community, the sequencing technology and/or the propor-
tions of host DNA contamination6.

SEQUENCING DEPTH, COMPLEXITY OF THE COMMUNITY AND 
HOST DNA CONTAMINATION 

Identifying new microbial taxa improves with more significant sequencing depths and 
with lower proportions of host DNA. This is particularly important for detecting very low 
abundant species19. Increasing sequencing depth also increases the number of identified 
AMR determinants. Similarly, rare antibiotic resistance genes were detected more fre-
quently at higher sequencing depths and were often absent in datasets generated with 
lower sequencing depths40. However, a balance between cost and required sequencing 
depth needs to be established, and therefore, it is crucial to select the appropriate se-
quencing method, read length and sequencing analysis tools. 

A critical factor for a robust analysis of shotgun sequencing data is the number of 
sequenced reads. In a study by Durazzi et al41 (2021), shotgun metagenomes with a low 
number of reads (<500,000 reads) were characterised as low-quality samples, which show 
high skewness of the relative species abundance distribution41. For large-scale microbiome 
studies, shallow whole-metagenome shotgun sequencing with a sequencing depth of 1 
Gbp can provide more accurate data at the genus and species level compared to 16S rRNA 
gene amplicon sequencing42. However, it will usually not provide data on low-abundance 
microbial genomes. The sequencing depth of 5-10 Gbp per sample is not enough to captu-
re all the microbes with low abundance. Small sequencing data sizes of 5 Gbp per sample 
provide limited genome coverage (5 Mbp) for a species of 0.1% of relative abundance in 
a human gut microbiome. Ultra-deep metagenomic sequencing showed that the size of 
assembled genomes and N50 continued to increase with the sequencing depth until 40 
Gbp36. To detect ARGs, increasing sequencing depths were associated with an increasing 
number of AMR determinants identified. A sequencing depth associated with ≥50 million 
reads was sufficient for detecting the resistome in bovine faecal samples40. Sequencing 
depth issues might be solved with the introduction of novel techniques such as reduced 
metagenome sequencing43, droplet microfluidics35 or novel functional metagenomics44.
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TOOLS FOR ANALYSIS OF METAGENOMIC DATASETS

A comprehensive review of computational tools for metagenomic sequencing data analy-
sis was recently published by Yang et al33 (2021). An analysis overview for gut microbiome 
studies is provided by Gao et al45 (2021). We refer to these reviews to describe the tools 
for sequencing quality control, metagenomic assembly, binning, gene prediction, gene 
annotation, taxonomic classification, and MAG abundance profiling33,45. In addition, we 
list novel bioinformatics tools for the analysis of 16S rRNA, metagenomics and metatran-
scriptomics data in Table II.

Detection of Resistance Genes in Metagenomic Datasets

Metagenomics enables the analysis of antimicrobial resistance in bacterial communities. 
Regularly updated and comprehensive resistome databases are crucial for the quality 
of information obtained. Several reviews describe and compare antimicrobial resistance 
gene databases. Recently, de Abreu et al29 (2021) published a minireview to describe the 
analysis of antibiotic resistance using metagenomic approaches. The review describes the 
functional annotation of the metagenome to study the resistome and the reference data-
bases available. In brief, the most used ARG databases that allow metagenomic data input 
are ResFinder, Comprehensive Antibiotic Resistance Database, MEGARes, ARG-database 
and Resfams29. Papp and Solymosi46 compared well-known antibiotic resistance gene da-
tabases based on structure and content. The CARD database has been shown to be the 
most comprehensive database for acquired antibiotic resistance genes and mutations46. 
Peng et al47 (2021) published a minireview on the bioinformatic tools for resistome analy-
sis of environmental samples. They showed that applying two or more bioinformatic tools 
and databases could provide a comprehensive knowledge of ARG profiles in diverse envi-
ronmental samples47. However, the differences in antibiotic classification of the databases 
show the need for expert knowledge to interpret results. Results should be interpreted 
with care as not all resistance genes are sufficient to cause resistance alone and might 
not confer resistance in all bacteria. For example, Margolis et al48 (2021) reported that 
the abundance of the tetX genes was strongly associated with the relative abundance of 
Bacteroidetes. However, an increase in tetX in this context does not suggest an increase 
in resistance to tetracycline antibiotics. TetX, a flavin-dependent monooxygenase inacti-
vates and confers resistance to tetracyclines only in aerobic bacteria and not in the anae-
robic Bacteroidetes48. 

Associating the potential bacterial hosts with ARGs is challenging. However, the poten-
tial bacterial hosts and ARGs are closely associated within the microbiome. Several analysis 
methods like network analysis as well as machine learning techniques have been applied to 
identify any connections between these two entities that could be relevant for future stu-
dies on infection transmission network49. A novel sequencing approach combining shotgun 
metagenomic with chromosome conformation capture (Hi-C) can link bacteria to ARGs, 
plasmids and phages using Hi-C-based networks. Using this technique, increased details 
on bacterial gene content and mobile genetic elements can be obtained50. 

Identification of Bias and Contamination: the Use of Controls and
in Silico Contaminant Removal

Bias can arise at every step of the microbiome workflow, particularly in the DNA ex-
traction and PCR amplification steps9,51. The use of positive controls will help to identify 
bias introduced by PCR amplification during library preparation or by various sequencing 
technologies. A positive mock control should be a valid representation for the investiga-
ted environment8. The DNA extraction of the positive control should be validated with 
the DNA extraction kit to ensure the extraction of the correct proportions of DNA from 
the positive control. Secondly, a positive control for sequencing (pre-extracted DNA mix) 
should be used to ensure that no errors were introduced during sequencing8. 
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TABLE 2. NEW BIOINFORMATIC TOOLS TO ANALYZE METAGENOMICS DATA. 

	 Name	 Functionality 	 Available at	 Ref. 

Agamemnon	 Metagenomics and metatranscriptomics	 https://github.com/	 60
	 quantification analysis suite providing	 ivlachos/agamemnon	
	 abundances at genus, species and strain 	
	 resolution and exploratory data visualisation.		

Animalcules	 Interactive microbiome analytic toolkit in R for 	 https://github.com/	 61
	 16S rRNA sequencing data, shotgun DNA 	 compbiomed/animalcules	
	 metagenomics data and RNA-based 	
	 metatranscriptomics profiling data. The toolkit	
	 combined analytics, vizualization methods and	
	 machine learning models.	   	

Binnacle	 Cluster scaffolds into comprehensive bins and 	 https://github.com/	 62
	 integrate existing binning methods to improve	 marbl/binnacle	
	 the contiguity and quality of metagenomic bins.		

Biobakery 3	 Integrate methods for taxonomic, strain-level,	 https://github.com/	 63
	 functional and phylogenetic profiling of	 biobakery/	
	 metagenomes to help multi-omics profiling for 	 biobakery/wiki	
	 microbial community studies. It includes 		
	 sequence-level quality control and contaminant 		
	 depletion guidelines (KneadData), MatPhlAn 3 for		
	 taxonomic profiling, HUMAnN 3 for functional 		
	 profiling, StrainPhlAn 3 and PanPhlAn 3 for		
	 nucleotide-and gene-variant-based strain profiling,		
	 and PhyloPhlAn 3 for phylogenetic placement and		
	 putative taxonomic assignment of new assemblies.		

EukDetect	 Identify microbial eukaryotes in shotgun 	 https:// github.com/	 64
	 metagenomic sequencing data.	 allind/EukDetect	

HOME-BIO	 Pipeline for metagenomic shotgun data analysis	 https://github.com/	 65
	 including a quality control step, assembly of	 carlferr/HOME-BIO	
	 sequences in contigs and taxonomic profiling.		

KAUST	 Comprehensive exploration of shotgun 	 https:	 66
Metagenomic 	 metagenomic data. Annotation of contigs or 	 //www.cbrc.kaust.edu.sa/	
Analysis 	 genes (including ARGs) and sample-to-sample or	 aamg/kmap.start
Platform	 gene catalog-based comparison.		

LueVari 	 Reference-free SNP caller based on read-colored	 https://github.com/	 67
	 de Bruijn graphs for identification of SNPS in 	 baharpan/cosmo/	
	 AMR genes and chromosomal DNA from shotgun	 tree/LueVari.	
	 metagenomics data.	   	

MaxBin 2.0	 Recovering individual genomes from metagenomes	 https:	 68
	  in a de novo manner.	 //sourceforge.net/	
		  projects/maxbin/ 	

Meta-Apo	 Reliable, high-resolution view of microbiome	 https://github.com/	 69
	 function from 16S amplicon sequencing.	 qibebt-bioinfo/ meta-apo 	

METAnnotatorX2	 Integrated analysis of deep and shallow 	 http:	 70
	 metagenomic data. Extracting taxonomic and 	 //probiogenomics.unipr.it/	
	 function information from metagenomic short	 cmu/
	 sequence reads, assembly of short, long and	
	 hybrid read-based metagenomic data sets and	
	 species-specific genome reconstruction with gene	
	 prediction and associated functional annotation.	  	

CONTINUED
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Commercial positive controls with defined synthetic communities are available42. Re-
cently, mock communities for the human gut microbiome were developed and are avai-
lable from the NITE Biological Resource Center at the National Institute of Technology 
and Evaluation (NITE, Tokyo, Japan)52. However, artificial microbiomes with defined ta-
xonomic information and similar complexity to a real microbial sample are still scarce42. If 
the available controls are found unsuitable for the study, custom positive controls compa-
rable to the investigated microbiome should be designed8. 

Negative controls (reagent-only or blank sampling) should be applied during the sam-
pling and processing of the samples to identify major contaminations from different pos-
sible sources: external contamination of sampling equipment, DNA kit contaminations or 
‘kitome’7,53-55, internal or cross-contamination between samples during sample processing 
or ‘splashome’55 and index hopping53. In silico decontamination can complement the la-
boratory approaches to distinguish contaminant microbial DNA from accurate microbial 
sequences. The open-source R package decontam (https://github.com/benjjneb/decon-
tam) can be used to identify and remove contaminant sequences in a marker gene and 
metagenomic data53. Additionally, the use of bacteriophage PhiX174 DNA as a quality and 
calibration control in Illumina sequencing may lead to contamination of the sequenced 
genomes. Therefore, filtering of bacteriophage sequences by mapping demultiplexed re-
ads against the PhiX174 genome is needed prior to the analysis40. 

CONCLUSIONS AND FUTURE PERSPECTIVES

In conclusion, studies have shown that the composition of gut bacteria is important for hu-
man health. However, recent advances in sequencing technology and metagenomics are still 
limited because of the lack of standardised protocols to analyse samples, making it difficult 
to understand the impact of the microbe on individuals or populations. A multidisciplinary 
approach, such as the multi-omics strategy, will allow scientists to get a more accurate picture 
of how the microbiome and its host interact. This multi-omics strategy can also be used to 

TABLE 2 (CONTINUED). NEW BIOINFORMATIC TOOLS TO ANALYZE METAGENOMICS DATA. 

	 Name	 Functionality 	 Available at	 Ref. 

metaXplor	 Interactive viral and microbial web-interfaced 	 https://github.com/	 71
	 data manager for managing, sharing and 	 SouthGreenPlatf orm/	
	 exploring metagenomic data.	 metaXplor 	

MetGEMs	 Predicting functional composition of 	 https://github.com/	 72
toolbox	 metagenomic samples, annotating putative	 yumyai/MetGEMs	
	 enzyme functions and metabolic routes r elated		
	 in human disease using 16S rRNA sequences.	  	

MiDSystem	 Online system for de novo assembly and 	 https://github.com/	 73
	 analysis of metagenomic data. Results from 	 NTU-CGM/miDSystem/	
	 embedded tools are visualised in an online		
	 summary report.		

mixtureS	 Identify strains, their numbers and abundance	 http:	 74
	 from shotgun reads.	 //www.cs.ucf.edu/	
		  ~xiaoman/mixtureS/	

nf-core/mag	 Pipeline for metagenome hybrid assembly and	 https://github.com/	 75
	 binning.	 nf-core/mag	

OGRE:Overlap	 Reduce the size of metagenomic datasets by	 https://github.com/	 76
Graph-based	 clustering reads into species-specific groups	 Marleen1/OGRE
metagenomic 	 based on their overlaps and facilitate assembly	
Read clustEring	  and downstream analyses.		
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discover new therapeutic targets for treating microbiome-related illnesses. While the use of 
multi-omics data is still in its early stages, it holds great promise for improving our under-
standing of the microbiome and its role in human health. Additionally, this approach can 
help to identify potential biomarkers for disease. Furthermore, there is a need to develop 
better-standardised methods or algorithms for identifying and characterising microbial ge-
nes and proteins. Finally, more extensive and longitudinal studies are required to understand 
how the microbiota changes over time. Microbiome research is a rapidly growing field with 
great potential despite these limitations. Ultimately, this research field will provide insights 
into the role of microbiota in human health and pave the way for new treatments for various 
diseases.

Conflict of Interest

None to declare. The authors declare that the research was conducted in the absence of any commercial or finan-
cial relationships that could be construed as a potential conflict of interest.

Acknowledgements

Not applicable.

Informed Consent

Not applicable.

Authors’ Contribution

BX, YG, HG: Conceptualization and supervision. SDK: writing- original draft preparation. SDK, JR, BX: data col-
lection and writing. BX, YG, HG, JR, SDK: writing- review and editing. All authors have read and agreed to the 
version of the manuscript.

ORCID ID

Sien De Koster: https://orcid.org/0000-0002-5267-5080; Juan Pablo Rodriguez-Ruiz: https://orcid.org/0000-0002-
8847-7297; Basil Britto Xavier: https://orcid.org/0000-0002-5897-0240.

Funding

SDK was supported by the University of Antwerp doctoral assistant funds.

REFERENCES

  1) 	Manor O, Dai CL, Kornilov SA, Smith B, Price ND, Lovejoy JC, Gibbons SM, Magis AT. Health and disease mark-
ers correlate with gut microbiome composition across thousands of people. Nat Commun 2020; 11: 1-12. 

  2) 	Tang Q, Jin G, Wang G, Liu T, Wang B, Cao H. Current Sampling Methods for Gut Microbiota: A Call for More 
Precise Devices. Front Cell Infect Microbiol 2020; 10: 151. 

  3) 	Ramirez J, Guarner F, Bustos Fernandez L, Maruy A, Sdepanian VL, Cohen H. Antibiotics as Major Disruptors 
of Gut Microbiota. Front Cell Infect Microbiol 2020; 10: 572912. 

  4) 	Stege PB, Hordijk J, Shetty SA, Visser M, Viveen MC, Rogers MRC, Gijsbers E, Dierikx CM, van der Plaats RQJ, 
van Duijkeren E, Franz E, Willems RJL, Fuentes S, Paganelli FL. Impact of long-term dietary habits on the hu-
man gut resistome in the Dutch population. Sci Rep 2022; 12: 1-13. 

  5) 	Xie H, Yang C, Sun Y, Igarashi Y, Jin T, Luo F. PacBio Long Reads Improve Metagenomic Assemblies, Gene Cat-
alogs, and Genome Binning. Front Genet 2020; 11: 516269 

  6) 	Whelan FJ, Waddell B, Syed SA, Shekarriz S, Rabin HR, Parkins MD, Surette MG. Culture-enriched metagenom-
ic sequencing enables in-depth profiling of the cystic fibrosis lung microbiota. Nat Microbiol 2020; 5: 379-390. 

  7) 	Kazantseva J, Malv E, Kaleda A, Kallastu A, Meikas A. Optimisation of sample storage and DNA extraction for 
human gut microbiota studies. BMC Microbiol 2021; 21: 1-13. 

  8) 	Hornung BVH, Zwittink RD, Kuijper EJ. Issues and current standards of controls in microbiome research. FEMS 
Microbiol Ecol 2019; 95: 1-7. 



13

METHODOLOGICAL GUIDANCE TO CLINICAL METAGENOMICS AND ANTIMICROBIAL RESISTANCE RESEARCH

  9) 	Jones J, Reinke SN, Ali A, Palmer DJ, Christophersen CT. Fecal sample collection methods and time of day im-
pact microbiome composition and short chain fatty acid concentrations. Sci Rep 2021; 11: 1-13. 

10) 	Plauzolles A, Toumi E, Bonnet M, Pénaranda G, Bidaut G, Chiche L, Allerdet-Servent J, Retornaz F, Goutorbe B, 
Halfon P. Human Stool Preservation Impacts Taxonomic Profiles in 16S Metagenomics Studies. Front Cell Infect 
Microbiol 2022; 12: 722886. 

11) 	Nagata N, Tohya M, Takeuchi F, Suda W, Nishijima S, Ohsugi M, Ueki K, Tsujimoto T, Nakamura T, Kawai T, Miy-
oshi-Akiyama T, Uemura N, Hattori M. Effects of storage temperature, storage time, and Cary-Blair transport 
medium on the stability of the gut microbiota. Drug Discov Ther 2019; 13: 256-260. 

12) 	Hale VL, Tan CL, Knight R, Amato KR. Effect of preservation method on spider monkey (Ateles geoffroyi) fecal 
microbiota over 8 weeks. J Microbiol Methods 2015; 113: 16-26. 

13) 	Marotz C, Cavagnero KJ, Song SJ, McDonal D, Wandro S, Humphrey G, Bryant M, Ackermann G, Diaz E, Knight 
R. Evaluation of the Effect of Storage Methods on Fecal, Saliva, and Skin Microbiome Composition. mSystems 
2021; 6: e01329-20. 

14) 	Kawada Y, Naito Y, Andoh A, Ozeki M, Inoue R. Effect of storage and DNA extraction method on 16S rRNA 
profiled fecal microbiota in Japanese adults. J Clin Biochem Nutr 2019; 64: 106-111. 

15) 	Wu C, Chen T, Xu W, Zhang T, Pei Y, Yang Y, Zhang F, Guo H, Wang Q, Wang L, Zhao B. The maintenance of 
microbial community in human fecal samples by a cost effective preservation buffer. Sci Rep 2021; 11: 1-10. 

16) 	Tap J, Cools-Portier S, Pavan S, Druesne A, Ohman L, Törnblom H, Simren M, Derrien M. Effects of the long-
term storage of human fecal microbiota samples collected in RNAlater. Sci Rep 2019; 9: 601. 

17) 	Peto L, Fawcett NJ, Crook DW, Peto TEA, Llewelyn MJ, Walker AS. Selective culture enrichment and sequenc-
ing of feces to enhance detection of antimicrobial resistance genes in third-generation cephalosporin resis-
tant Enterobacteriaceae. PLoS One 2019; 14: e0222831. 

18) 	Lanza VF, Baquero F, Martínez JL, Ramos-Ruiz R, Gonzalez-Zorn B, Andremont A, Sanchez-Valenzuela A, Eh-
rlich SD, Kennedy S, Ruppe E, van Schaik W, Willems RJ, de la Cruz F, Coque TM. In-depth resistome analysis 
by targeted metagenomics. Microbiome 2018; 6: 1-14. 

19)	 Pereira-Marques J, Hout A, Ferreira RM, Weber M, Pinto-Ribeiro I, van Doorn LJ, Knetsch CW, Figueiredo C. 
Impact of host DNA and sequencing depth on the taxonomic resolution of whole metagenome sequencing 
for microbiome analysis. Front Microbiol 2019; 10: 1277. 

20) 	Ahannach S, Delanghe L, Spacova I, Witthouck S, Van Beeck W, De Boeck I, Lebeer S. Microbial enrichment 
and storage for metagenomics of vaginal, skin, and saliva samples. iScience 2021; 24: 103306. 

21) 	Bjerre RD, Hugerth LW, Boulund F, Seifert M, Johansen JD, Engstrand L. Effects of sampling strategy and DNA 
extraction on human skin microbiome investigations. Sci Rep 2019; 9: 1-11. 

22) 	Mancabelli L, Milani C, Anzalone R, Alessandri G, Lugli GA, Tarracchini C, Fontana F, Turroni F, Ventura M. Free 
DNA and Metagenomics Analyses: Evaluation of Free DNA Inactivation Protocols for Shotgun Metagenomics 
Analysis of Human Biological Matrices. Front Microbiol 2021; 12: 749373.

23) 	Zhang T, Zhang XX, Ye L. Plasmid metagenome reveals high levels of antibiotic resistance genes and mobile 
genetic elements in activated sludge. PLoS One 2011; 6: e26041. 

24) 	Gaulke CA, Schmeltzer ER, Dasenko M, Tyler BM, Vega Thurber R, Sharpton TJ. Evaluation of the Effects of Li-
brary Preparation Procedure and Sample Characteristics on the Accuracy of Metagenomic Profiles. mSystems 
2021; 6: e00440-21. 

25) 	Illumina. Shotgun Metagenomics Methods Guide. Illumina. Published online 2020 [accessed on 14 april 2022].
26) 	Pacific biosciences. Technical overview: metagenomics shotgun library preparation using SMRTbell express 

template prep kit 2.0. Published online February 2021: https://www.pacb.com/wp-content/uploads/Metage-
nomics-Shotgun-Library-Preparation-Using-SMRTbell-Express-TPK-2.0-Customer-Training.pdf [accessed on 14 
april 2022].

27) 	Oxford Nanopore Technologies. Metagenomic sequencing with Oxford Nanopore. Published online 2020: 
https://nanoporetech.com/sites/default/files/s3/literature/metagenomic-sequencing-guide.pdf [accessed on 
14 april 2022].

28) 	Noyes NR, Weinroth ME, Parker JK, Dean CJ, Lakin SM, Raymond RA, Rovira P, Doster E, Abdo Z, Martin JN, 
Jones KL, Ruiz J, Boucher CA, Belk KE, Morley PS. Enrichment allows identification of diverse, rare elements in 
metagenomic resistome-virulome sequencing. Microbiome 2017; 5: 142. 

29) 	de Abreu VAC, Perdigão J, Almeida S. Metagenomic Approaches to Analyze Antimicrobial Resistance: An 
Overview. Front Genet 2021; 11: 575592. 

30) 	Guitor AK, Raphenya AR, Klunk J, Kuch M, Alcock B, Surette MG, McArthur AG, Poinar HN, Wright GD. Captur-
ing the resistome: A targeted capture method to reveal antibiotic resistance determinants in metagenomes. 
Antimicrob Agents Chemother 2019; 64: e01324-19. 

31) 	Macedo G, van Veelen HPJ, Hernandez-Leal L, van der Maas P, Heederik D, Mevius D, Bossers A, Schmitt H. 
Targeted metagenomics reveals inferior resilience of farm soil resistome compared to soil microbiome after 
manure application. Sci Total Environ 2021; 770: 145399. 

32) 	Beaudry MS, Thomas JC, Baptista RP, Sullivan AH, Norfolk W, Devault A, Enk J, Kieran TJ, Rhodes Jr OE, Per-
ry-Dow KA, Rose LJ, Bayona-Vasquez NJ, Oladeinde A, Lipp EK, Sanchez S, Glenn TC. Escaping the fate of 
Sisyphus: assessing resistome hybridization baits for antimicrobial resistance gene capture. Environ Microbiol 
2021; 23: 7523-7537. 

33) 	Yang C, Chowdhury D, Zhang Z, Cheung WK, Lu Aiping, Bian Z, Zhang L. A review of computational tools for 
generating metagenome-assembled genomes from metagenomic sequencing data. Comput Struct Biotech-
nol J 2021; 19: 6301-6314. 

34) 	Haro-Moreno JM, López-Pérez M, Rodriguez-Valera F. Enhanced Recovery of Microbial Genes and Genomes 
From a Marine Water Column Using Long-Read Metagenomics. Front Microbiol 2021; 12: 708782. 



S. De Koster, J.P. Rodriguez-Ruiz, Y. Glupczynski, H. Goossens, B.B. Xavier

14

35) 	Pryszlak A, Wenzel T, Seitz KW, Hildebrand F, Kartal E, Cosenza MR, Benes V, Bork P, Merten CA. Enrichment 
of gut microbiome strains for cultivation-free genome sequencing using droplet microfluidics. Cell Reports 
Methods 2022; 2: 100137. 

36) 	Jin H, You L, Zhao F, Li S, Ma T, Kwok LY, Xi H, Sun Z. Hybrid, ultra-deep metagenomic sequencing enables ge-
nomic and functional characterization of low-abundance species in the human gut microbiome. Gut Microbes 
2022; 14: 2021790.

37) 	Yu X, Jiang W, Huang X, Lin J, Ye H, Liu B. rRNA Analysis Based on Long-Read High-Throughput Sequencing 
Reveals a More Accurate Diagnostic for the Bacterial Infection of Ascites. Biomed Res Int 2021; 2021: 6287280.

38) 	Ciuffreda L, Rodríguez-Pérez H, Flores C. Nanopore sequencing and its application to the study of microbial 
communities. Comput Struct Biotechnol J 2021; 19: 1497-1511. 

39) 	Ong CT, Ross EM, Boe-Hansen GB, Turni C, Hayes BJ, Tabor AE. Technical note: overcoming host contamination 
in bovine vaginal metagenomic samples with nanopore adaptive sequencing. J Anim Sci 2022; 100: 1-9.

40) 	Zaheer R, Noyes N, Ortega Polo R, Cook SR, Marinier E, Van Domselaar G, Belk KE, Morley PS, McAllister 
TA. Impact of sequencing depth on the characterization of the microbiome and resistome. Sci Rep 2018; 
8: 1-11.

41) 	Durazzi F, Sala C, Castellani G, Manfreda G, Remondini D, De Cesare A. Comparison between 16S rRNA and 
shotgun sequencing data for the taxonomic characterization of the gut microbiota. Sci Rep 2021; 11: 1-10. 

42) 	Xu W, Chen T, Pei Y, Guo H, Li Z, Yang Y, Zhang F, Yu J, Li X, Yang Y, Zhao B, Wu C. Characterization of Shallow 
Whole-Metagenome Shotgun Sequencing as a High-Accuracy and Low-Cost Method by Complicated Mock 
Microbiomes. Front Microbiol 2021; 12: 678319. 

43) 	Snipen L, Angell IL, Rognes T, Rudi K. Reduced metagenome sequencing for strain-resolution taxonomic pro-
files. Microbiome 2021; 9: 1-19. 

44) 	Crofts TS, McFarland AG, Hartmann EM. Mosaic Ends Tagmentation (METa) Assembly for Highly Efficient 
Construction of Functional Metagenomic Libraries. mSystems 2021; 6: e00524-21.

45) 	Gao B, Chi L, Zhu Y, Shi X, Tu P, Li B, Yin J, Gao N, Shen W, Schnabl B. An introduction to next generation se-
quencing bioinformatic analysis in gut microbiome studies. Biomolecules 2021; 11: 530. 

46) 	Papp M, Solymosi N. Review and Comparison of Antimicrobial Resistance Gene Databases. Antibiotics 2022; 
11: 339.

47) 	Peng Z, Mao Y, Zhang N, Zhang L, Wang Z, Han M. Utilizing Metagenomic Data and Bioinformatic Tools for 
Elucidating Antibiotic Resistance Genes in Environment. Front Environ Sci 2021; 9: 757365. 

48) 	Margolis EB, Hakim H, Dallas RH, Allison KJ, Ferrolino J, Sun Y, Pui CH, Yao J, Chang TC, Hayden RT, Jeha S, 
Tuomanen EI, Tang L, Rosch JW, Wolf J. Antibiotic prophylaxis and the gastrointestinal resistome in paediatric 
patients with acute lymphoblastic leukaemia: a cohort study with metagenomic sequencing analysis. The 
Lancet Microbe 2021; 2: e159-e167. 

49) 	Sun Y, Clarke B, Clarke J, Li X. Predicting antibiotic resistance gene abundance in activated sludge using shot-
gun metagenomics and machine learning. Water Res 2021; 202: 117384. 

50) 	Ivanova V, Chernevskaya E, Vasiluev P, Ivanov A, Tolstoganov I, Shafranskaya D, Ulyantsev V, Korobeynikov A, 
Razin SV, Beloborodova N, Ulianov SV, Tyakht A. Hi-C Metagenomics in the ICU: Exploring Clinically Relevant 
Features of Gut Microbiome in Chronically Critically Ill Patients. Front Microbiol 2022; 12: 770323. 

51) 	McLaren MR, Willis AD, Callahan BJ. Consistent and correctable bias in metagenomic sequencing experi-
ments. Elife 2019; 8: e46923.

52) 	Tourlousse DM, Narita K, Miura T, Ohashi A, Matsuda M, Ohyama Y, Shimamura M, Furukawa M, Kasahara K, 
Kameyama K, Saito S, Goto M, Shimizu R, Mishima R, Nakayama J, Hosomi K, Kunisawa J, Terauchi J, Sekiguchi 
Y, Kawasaki H. Characterization and Demonstration of Mock Communities as Control Reagents for Accurate 
Human Microbiome Community. Microbiol Spectr 2022; 10: e1915-21.

53) 	Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. Simple statistical identification and removal of 
contaminant sequences in marker-gene and metagenomics data. Microbiome 2018; 6: 1-14. 

54) 	Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, Turner P, Parkhill J, Loman NJ, Walker AW. 
Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol 
2014; 12: 1-12. 

55) 	Olomu IN, Pena-Cortes LC, Long RA, Vyas A, Krichevskiy O, Luellwitz R, Singh P, Mulks MH. Elimination of 
“kitome” and “splashome” contamination results in lack of detection of a unique placental microbiome. BMC 
Microbiol 2020; 20: 1-19. 

56) 	Bicalho MLS, Machado VS, Higgins CH, Lima FS, Bicalho RC. Genetic and functional analysis of the bovine 
uterine microbiota. Part I: Metritis versus healthy cows. J Dairy Sci 2017; 100: 3850-3862. 

57) 	Osuna-Mascaró C, Doña J, Johnson KP, Esteban R, De Rojas M. Complete mitochondrial genomes and bacterial 
metagenomic data from two species of parasitic avian nasal-mites (Rhinonyssidae: Mesostigmata). Front Ecol 
Evol 2020; 8: 142. 

58) 	Ju F, Li B, Ma L, Wang Y, Huang D, Zhang T. Antibiotic resistance genes and human bacterial pathogens: Co-oc-
currence, removal, and enrichment in municipal sewage sludge digesters. Water Res 2016; 91: 1-10. 

59) 	Lau HJ, Lim CH, Foo SC, Tan HS. The role of artificial intelligence in the battle against antimicrobial-resistant 
bacteria. Curr Genet 2021; 67: 421-429. 

60) 	Skoufos G, Almodaresi F, Zakeri M, Paulson JN, Patro R, Hatzigeorgiou AG, Vlachos IS. AGAMEMNON: an 
Accurate metaGenomics And MEtatranscriptoMics quaNtificatiON analysis suite. Genome Biol 2022; 23: 
1-27. 

61) 	Zhao Y, Federico A, Faits T, Manimaran S, Segre D, Monti S, Johnson WE. animalcules: interactive microbiome 
analytics and visualization in R. Microbiome 2021; 9: 1-16. 

62) 	Muralidharan HS, Shah N, Meisel JS, Pop M. Binnacle: Using Scaffolds to Improve the Contiguity and Quality 
of Metagenomic Bins. Front Microbiol 2021; 12: 638561. 



15

METHODOLOGICAL GUIDANCE TO CLINICAL METAGENOMICS AND ANTIMICROBIAL RESISTANCE RESEARCH

63) 	Beghini F, McIver LJ, Blanco-Míguez A, Dubois L, Asnicar F, Maharjan S, Mailyan A, Manghi P, Scholz M, Thom-
as AM, Valles-Colomer M, Weingart G, Zhang Y, Zolfo M, Huttenhower C, Franzosa EA, Segata N. Integrating 
taxonomic, functional, and strain-level profiling of diverse microbial communities with biobakery 3. Elife 
2021; 10: e65088. 

64) 	Lind AL, Pollard KS. Accurate and sensitive detection of microbial eukaryotes from whole metagenome shot-
gun sequencing. Microbiome 2021; 9: 1-18. 

65) 	Ferravante C, Memoli D, Palumbo D, Ciaramella P, Di Loria A, D’Agostino Y, Nassa G, Rizzo F, Tarallo R, Weisz A, 
Giurato G. HOME-BIO (sHOtgun MEtagenomic analysis of BIOlogical entities): a specific and comprehensive 
pipeline for metagenomic shotgun sequencing data analysis. BMC Bioinformatics 2021; 22: 1-10.

66) 	Alam I, Kamau AA, Ngugi DK, Gojobori T, Duarte CM, Bajic VB. KAUST Metagenomic Analysis Platform 
(KMAP), enabling access to massive analytics of re-annotated metagenomic data. Sci Rep 2021; 11: 1-14. 

67) 	Alipanahi B, Muggli MD, Jundi M, Noyes NR, Boucher C. Metagenome SNP calling via read-colored de Bruijn 
graphs. Bioinformatics 2020; 36: 5275-5281. 

68) 	Wu YW, Singer SW. Recovering Individual Genomes from Metagenomes Using MaxBin 2.0. Curr Protoc 2021; 
1: 1-14. 

69) 	Jing G, Zhang Y, Cui W, Liu L, Xu J, Su X. Meta-Apo improves accuracy of 16S-amplicon-based prediction of 
microbiome function. BMC Genomics 2021; 22: 1-11. 

70) 	Milani C, Lugli GA, Fontana F, Lugli GA, Fontana F, Mancabelli L, Alessandri G, Longhi G, Anzalone R, Viappi-
ani A, Turroni F, van Sinderen D, Ventura M. METAnnotatorX2: a Comprehensive Tool for Deep and Shallow 
Metagenomic Data Set Analyses. mSystems 2021; 6: e00583-21. 

71) 	Sempéré G, Pétel A, Abbé M, Lefeuvre P, Roumagnac P, Mahe F, Baurens G, Filloux D. MetaXplor: An interac-
tive viral and microbial metagenomic data manager. Gigascience 2021; 10: 1-8. 

72) 	Patumcharoenpol P, Nakphaichit M, Panagiotou G, Senavonge A, Suratannon N, Vongsangnak W. MetGEMs 
Toolbox: Metagenome-scale models as integrative toolbox for uncovering metabolic functions and routes of 
human gut microbiome. PLoS Comput Biol 2021; 17: e1008487. 

73) 	Lee CY, Lee YF, Lai LC, Tsai MH, Lu TP, Chuang EY. MiDSystem: A comprehensive online system for de novo 
assembly and analysis of microbial genomes. N Biotechnol 2021; 65: 42-52. 

74) 	Li X, Hu H, Li X. MixtureS: A novel tool for bacterial strain genome reconstruction from reads. Bioinformatics 
2021; 37: 575-577. 

75)	 Krakau S, Straub D, Gourlé H, Gabernet G, Nahnsen S. Nf-Core/Mag: a Best-Practice Pipeline for Metagenome 
Hybrid Assembly and Binning. NAR Genomics Bioinforma 2022; 4: 1-6. 

76) 	Balvert M, Luo X, Hauptfeld E, Schönhuth A, Dutilh BE. OGRE: Overlap Graph-based metagenomic Read clus-
tEring. Bioinformatics 2021; 37: 905-912.


