INTRODUCTION

Helicobacter pylori infection is an infectious disease and should be managed accordingly. Only treatment regimens that provide an eradication rate ≥ 90% should be used in clinical practice. The best approach to treatment continues to be debated in consensus conferences and guidelines with regard to the factors that affect outcomes, particularly proton pump inhibitor (PPI) metabolism, compliance, and antibiotic resistance. For this year’s review on the treatment of *H. pylori* infection, studies relevant to clinical practice were selected.

Bismuth Quadruple Therapy

The 2022 Maastricht VI/Florence consensus recommends a 14-day course of bismuth quadruple therapy (BQT) as first-line empirical therapy, particularly if the results of the antimicrobial susceptibility test (AST) are unknown and/or the clarithromycin (CLA) resistance rate is >15%.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Several trials have compared BQT to other regimens as first- and second-line empirical therapies. The control arms were either standard regimens or novel regimens such as high-dose dual therapy (HDDT) with a potassium-competitive acid blocker (P-CAB) vonoprazan dual or triple therapy. First-line therapy: A number of studies with different study designs confirmed the first-line efficacy of BQT. A single-center, open-label randomized controlled trial (RCT) included 800 patients on four regimens, depending on prior antibiotic use: empirical triple therapy plus bismuth (eTTB), containing CLA, levofloxacin (LEVO), or metronidazole (MET), versus tailored therapy (tTTB). The eradication rates in the tTTB arm were significantly higher than the empiric eTTB arms according to the intention-to-treat (ITT) (89.5% for tTTB vs. 80.0%, 81.5%, and 81.5% for eTTB-CLA, -LEVO, and -MET, respectively) and per-protocol (PP) analysis (95.1% for tTTB vs. 86.7%, 86.5%, and 87.8%, for eTTB-CLA, -LEVO, and -MET, respectively). The limitations of this study were its monocentric design and doubt concerning antibiotic history accuracy.

The effectiveness and safety of empirical first-line treatment were studied in 2,996 patients from Italian centers participating in the European Registry on H. pylori Management (Hp-EuReg). Sequential therapy and BQT-three-in-one single capsule (BQT-TSC) were prescribed in 57.5% and 20% of patients, respectively. The eradication rates in the ITT and PP populations were 81.9% and 91.8% for sequential therapy and 87.1% and 96.5% for BQT-TSC, respectively. However, the PPI omeprazole doses varied from 20 to 60 mg.

A RCT from China evaluated whether amoxicillin (AMO) could replace tetracycline (TET) in the BQT as first-line treatment in 404 H. pylori-infected individuals. A similar eradication rate was observed in the ITT (81.7% vs. 83.2%) and PP analyses (89.0% vs. 91.6%), for AMO and TET, respectively. The rate of drug side effects was 29.5% vs. 39.7% in the AMO- vs. TET-containing BQT but compliance for both regimens was similar (92.0% vs. 89.9%).

The treatment of penicillin-allergic patients is challenging in the setting of antibiotic resistance and the lack of availability of TET in some regions has led to the search for alternative antibiotics such as cefuroxime. A first-line randomized trial on 450 patients with penicillin allergies compared 14 days of BQT containing either minocycline (100 mg twice daily) and MET (400 mg four times daily) with minocycline (100 mg twice daily) and cefuroxime (500 mg twice daily) or cefuroxime (500 mg twice daily) and MET (500 mg three times daily). The eradication rates were not significantly different (p > 0.5) in the ITT (84%, 82.7%, and 82%) and PP (91.7%, 90.9%, and 88.2%) populations, and adverse events and compliance were also similar between groups.

Finally, in a review paper, BQT for at least 10 days has been suggested as first-line or rescue therapy for HIV-infected people because primary (single and multiple) resistance to antibiotics is very frequent in H. pylori strains isolated from this group.

Second-line therapy: Several studies have demonstrated the effectiveness of BQT as rescue and salvage therapy. In Taiwan, a RCT in patients who failed first-line CLA-containing therapy compared LEVO-containing QT [Esomeprazole (40 mg), AMO (1 g), LEVO (500 mg), and MET (500 mg), all twice daily] for 14 days (L-QT14) (n=280) with BQT [Esomeprazole (40 mg twice daily), bismuth tripotassium dicitrate (300 mg four times daily), TET (500 mg four times daily), and MET (500 mg three times daily)] for 10 days (BQT10) (n=280). The eradication rates were 88% vs. 88%, and for the PP population 90% vs. 93%, for L-QT14, and BQT10, respectively. The difference was not statistically different. The frequency of adverse events was higher with BQT10 (77%) than with L-QT14 (48%).

Another multicentric study evaluated the efficacy and safety of BQT as second-line or salvage therapy in 151 patients previously treated with either triple CLA-based (33.5%), sequential (25%), concomitant (7.5%), other (5.2%), or unknown (28.8%) therapy. The eradication rate was 90.1% while compliance was 93%. Sixty-three patients experienced side effects, of which 15 were severe. Side effects and price were the main limitations of the treatment. Previous use of rifabutin and the number of prior treatments negatively impacted the treatment outcome.

Italian centers participating in the Hp-EuReg assessed the effectiveness and the safety of the second-line treatments in 722 patients. The BQT-three-in-one single capsule (BQT-TSC) for 10 days was the most prescribed in 159 patients (46%), followed by triple therapy containing LEV (32%), rifabutin (15%), and sequential (7%). Eradication was achieved in 83.6% of patients.
in the ITT analysis and 92.5% in the PP analysis in the BQT group. Among all second-line therapies, BQT-TSC was the only one that provided an eradication rate of >90% in spite of more frequent side effects.

Finally, among new molecules, antofloxacin-based BQT has shown promising results20-22. Antofloxacin is a newly developed derivative of levofloxacin. It has demonstrated more potent antimicrobial activity than that of ciprofloxacin, ofloxacin, and sparfloxacin against strains that are quinolone-resistant.

Individualized Treatment

A meta-analysis, including 34 studies and 9,613 patients, evaluated the use of antimicrobial susceptibility testing (tailored therapy) vs. empirical locally preferred therapy (ELPT)23. The results showed that tailored therapy performed better than ELPT with an odds ratio (OR) of 2.7 and 95% confidence interval (95%CI) of 2.53-2.79. However, for tailored therapy, eradication rates of >90% and 95% were achieved in only 44% and 15% of studies, respectively. Hypotheses that might explain the less potent effectiveness of tailored therapy than expected included: a) host metabolism by cytochrome 2C19 polymorphism: only esomeprazole and rabeprazole are metabolized by another enzymatic route independent of this polymorphism24; b) drug pharmacokinetics: among PPIs, esomeprazole and rabeprazole are the most potent for \textit{H. pylori} eradication, providing the best intragastric alkalinization which is important for the optimal efficacy of acid-sensitive antibiotics like CLA and AMO. Esomeprazole (40 mg) and rabeprazole (20 mg) provide a pH >4 for 58.4% and 50.3%, over a period of 24 hours, respectively. A network meta-analysis comparing the efficacy and safety of different dosages of esomeprazole and rabeprazole suggested that both at 40 mg twice daily may be the optimum dosage25. Further studies are necessary to confirm these findings.

High Acid Suppression and Dual Therapy

Vonoprazan (VONO) has been tested extensively as dual therapy with AMO, the most acid-sensitive antibiotic with very low resistance. Furthermore, AMO is a time-dependent antibiotic, an argument for increasing the frequency of administration to 3 to 4 times a day. VONO has a rapid onset of action, is capable of achieving therapeutic levels after the first dose and is more potent than PPIs26.

This P-CAB was studied in various RCTs, including short triple therapy (7 days) versus classical triple therapy; VONO versus PPI; VONO (2 x 20 mg) dual therapy with high and low dose AMO, 7 or 10 days; and VONO with divided doses of AMO four times per day (q.i.d.)10,27-29.

Nearly all showed the same positive results for eradication rates >85% or >90%, VONO was non-inferior or better than PPI, VONO was better than PPI in CLA-resistant (R), and VONO dual therapy was non-inferior to triple therapy with PPI.

A systemic review and a meta-analysis including 5 and 8 RCTs, respectively, concluded that VONO-based therapies are better than PPI-based therapies, that VONO/AMO dual therapy is non-inferior to VONO-based triple therapy and superior to omeprazole- or lansoprazole-based triple therapy, with fewer side effects30,31. Patients with CLA-R strains particularly benefited from VONO-based therapy (dual or triple).

The only European/US RCT first-line trials performed, compared VONO and high dose AMO (3 x 1 g) as dual therapy with two classical triple therapies, one with PPI and one with VONO. These studies confirmed the superiority of VONO therapy in CLA-R strains. However, no difference was observed in CLA-susceptible (S) strains and all eradication rate results were <85%. Resistance in this group was high with CLA-R rates between 20% and 23% and MET-R around 70%. It must be said that, in this study, all medication was taken before meals, including the antibiotics32.

The comparison of study results provides limited information due to different study designs, different doses and schedules of PPI compared with VONO, and no information on whether the PPIs were started before eradication (VONO achieves full effectiveness within a single day of administration vs. PPI which requires 3-5 days), and timing of administration with respect to intake of food was not mentioned33,34.
HDDT has also been compared with other eradication schemes. A meta-analysis, including 14 RCTs (2 rescue studies and 12 first line) and 5,121 patients, compared HDDT (PPI >2x/day, AMO >2 g for 14 days) with BQT for 10 (n=3) or 14 days. The results suggested that HDDT using PPI is as effective as BQT. HDDT had fewer adverse events, but compliance was similar. However, the studies were very heterogeneous and compared different dosing regimens of dual therapy (PPI and/or AMO 2, 3 to 4 times daily) with different bismuth-based combination treatments.

HDDT for 14 days (esomeprazole (20 mg)/AMO (750 mg) q.i.d.) was also compared with culture-based therapy as rescue therapy. They also examined the results in the context of CYP2C19 polymorphisms in intermediate/poor metabolizers. Eradication rates of 85% were reached in both arms. In intermediate and poor metabolizers, 90% eradication was reached with dual therapy.

From these studies, we can conclude that VONO is more effective than PPI in first-line treatment, especially for CLA-R strains. Dual therapy is effective and can be used if high-dose acid suppression is combined with high-dose AMO and the treatment is given >2 times daily. The only study that came from non-Asian countries reported less impressive results.

Probiotics

Review articles from 2022 confirm that adding probiotics increases the eradication rates in many prospective trials. Monotherapy, however, decreases the bacterial load only by 14%. In terms of the possible mechanisms of action of probiotics that have been explored in this setting, the following beneficial effects have been mentioned: a decrease in side effects, an increase in IgA levels, strengthening of the mucosal barrier, competitively interacting with *H. pylori* at the microbial adherence sites, enhancing immune responses, and control of antibiotic resistance by suppression of drug-resistant bacterial growth and drug-resistant gene transmission. Conflicting results exist, which could be partly due to the fact that not all mixtures are effective. The most promising probiotics appears to be from the Lactobacillus group. In two prospective trials, BQT was compared with or without Lactobacilli (*Lactobacillus rhamnosus* or *Lactobacillus reuteri*). No significant differences were reported (ITT and PP). In another controlled trial, where bismuth therapy was used alone or combined with a mixture of *Bifidobacterium*, *Lactobacillus*, and *Enterococcus* capsules, the combination was superior to BQT alone.

Microbiota

Two interesting studies were conducted recently in this area. One RCT in Taiwan compared the outcome of a second-line eradication therapy with either L-QT14 or BQT10. The results showed that the recovery of the microbiota diversity was slower with BQT10 and that the recovery of species abundance was partial after both therapies. A fluctuation in resistome levels, particularly a significant transient increase at week two followed by a return to baseline by week eight after both regimens, was also observed. At the same time, the resistance rates of *Escherichia coli* and *Klebsiella pneumoniae* to LEVO, ampicillin, and various cephalosporins were significantly increased in the L-QT14 group compared with BQT10 at week 2. These resistance levels were restored to pretreatment levels and showed no significant differences at week 8 and 1 year. Another study reported comparable results with a return to baseline composition of the microbiome after weeks or months.

Taken together, it appears that the alterations in gut microbiota (diversity, composition, and function) induced by *H. pylori* treatment may be transient.

Barriers to Treatment

Barriers to treatment have been assessed in a few articles concerning knowledge and experience of *H. pylori*, compliance, and the affordability of BQT. Among a sample of US individ-
uals who responded to an online questionnaire, knowledge of *H. pylori* infection was low, while recognition of difficulties with treatment compliance was high. In another study, patient experience with *H. pylori* management was often perceived negatively due to the context of decision-making, health beliefs, barriers experienced, cues to action, and the impact of new knowledge. At the same time, internal cues like symptoms and fear of cancer may modify the patient’s perception and acceptance of the treatment. Thus, increasing patient awareness of *H. pylori* infection and increasing provider awareness about patient values, beliefs, anxieties, and expectations surrounding *H. pylori* diagnosis/treatment may improve provider-patient communication. A meta-analysis of nine studies suggested that using technology-enhanced communication initiatives can effectively improve compliance (OR 4.52, 95% CI 2.09-9.77, \(p<0.01 \)) and eradication rate (OR 1.98, 95% CI 1.34-2.93, \(p<0.01 \)) but not the rate of adverse events (OR 0.65, 95% CI 0.27-1.57, \(p=0.34 \)). Even a simple telephone follow-up by a clinical pharmacist can improve eradication. Furthermore, BQT can be limited by price or availability. This was demonstrated in a study from Portugal.

Factors Affecting Treatment Success

The main factor affecting treatment success is antibiotic resistance. Many studies have focused on the trends in resistance over decades or years showing that CLA is the most affected molecule. A systematic review and meta-analysis including 248 publications revealed that the overall prevalence of CLA resistance worldwide is 27.5% with a significant increase from 2010-2017 (24.3%) to 2018-2021 (32.1%), and the top three resistance areas being in Switzerland (67.2%), Portugal (48.1%), and Israel (46.1%). Boyanova et al. summarized trends in resistance over the last four years (2018-2022) and confirmed the high variability between countries. AMO resistance, generally rare (0 to <2%), showed a trend toward increasing in Bulgaria, China, Iran, and Vietnam. TET resistance remained very low (<1%), except in Iran (18% in 2017-2019). The good news is that trends are moving toward decreasing or stabilization for CLA, LEV, or MET in France, Russia, Spain, China, Chile, and Columbia. The recent trend of systematic use of antimicrobial susceptibility testing (AST) in the US seems to be cost-effective and it could overcome the escalation in resistance if combined with patient education.

The simultaneous presence in a stomach of resistant and susceptible isolates to the same antibiotic, so-called heteroresistance, is one of the factors leading to eradication failure. A meta-analysis including 26 studies on heteroresistance from 2001 to 2022 revealed particularly high levels of heteroresistance to MET (61.1%), CLA (60.1%), and LEVO (46.1%) compared to a previous meta-analysis that reported rates of 14% to MET and 7% to CLA. Interesting data from Germany pointed out the high prevalence of resistance and heteroresistance in atrophic regions of the stomach: 81.2% of patients with advanced gastritis (OLGA III-IV) compared to 45.5% of patients with mild gastritis (OLGA I-II).

Owing to the increasing *H. pylori* resistance rate to antimicrobials, coupled with the declining eradication rates in most parts of the world, all the published data emphasize the need for systematic AST to tailor eradication therapy and educate patients.

See Table 1 for the summary of *H. pylori* primary resistance to antibiotics during the last year worldwide in adult patients.

CONCLUSIONS

During the past twelve months, studies on the treatment of *H. pylori* have attempted to address issues of antibiotic resistance and compliance. First, the increasing level of antibiotic resistance that persists globally has led to treatment strategy adaptations including prescribing the most potent first-line and salvage therapy, namely BQT, or individualizing first-line treatment based on using AST when available, which is cost-effective. Novel regimens (i.e., HDDT, VONO-based) have demonstrated great efficacy in Asian studies while in other regions large studies are awaited. Furthermore, their position in the current therapeutic strategy needs clarification. Second, compliance should be improved through good communication that relies on the doctor’s awareness of the patient’s beliefs and the use of multimedia by
the doctor/pharmacist. Finally, the benefit of adding probiotics to the eradication strategy is not consistently observed and the impact of *H. pylori* treatment in terms of alterations to the microbiota appears to be transient. Future perspectives include finding ways to make BQT regimens universally available and testing of non-drug/natural products and new molecules/regimens.

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgments

We thank S. Field for the editing assistance.

Informed Consent

Not applicable.

Funding

None.

REFERENCES

